Stripe Climate es la forma más fácil de colaborar en el lanzamiento y el crecimiento de algunas de las tecnologías más prometedoras de eliminación de dióxido de carbono. Únete a un grupo cada vez más numeroso de empresas que están trabajando para cambiar el curso del cambio climático.
Hay dos formas de comprar de forma anticipada procesos de eliminación de dióxido de carbono con Stripe Climate. Todas las compras se realizan a través de Frontier, un compromiso de mercado para comprar más de 1.000 millones de dólares en procesos de eliminación permanente de dióxido de carbono antes de 2030.
En unos pocos clics, destina un porcentaje de tus ingresos para ayudar a que las empresas más jóvenes de la cartera de Frontier salgan del laboratorio y trabajen en el campo. Esta es la opción adecuada para empresas que (i) tienen como preocupación principal catalizar el campo y (ii) no necesitan comprar una cantidad específica de toneladas para cumplir un objetivo climático.
Realiza un pedido por adelantado de una cantidad específica de toneladas a través del Dashboard o la API de Stripe. Las toneladas provienen de la cartera de compras estipuladas de Frontier. Se trata de la opción adecuada para empresas que (i) necesitan comprar una cantidad específica de toneladas para cumplir un objetivo climático, o (ii) quieren ofrecer eliminación de dióxido de carbono a sus propios clientes.
Para evitar los efectos más catastróficos del cambio climático, debemos lograr que el aumento de la temperatura media mundial se limite a 1,5 °C por encima de los niveles preindustriales: eso equivale a reducir las emisiones anuales de CO₂ en todo el mundo desde las aproximadamente 40 gigatoneladas de 2018 hasta el «cero neto» en 2050.
Para lograrlo, la humanidad tendrá que reducir drásticamente las nuevas emisiones de dióxido de carbono, además de eliminar el CO₂ que ya está en la atmósfera.
Las soluciones que existen hoy en día para eliminar las emisiones de dióxido de carbono, como la reforestación y la retención del carbono del suelo, son importantes, pero solo con ellas no se puede hacer frente a un problema de tal magnitud. Para el año 2050, es necesario desarrollar nuevas tecnologías de eliminación del dióxido de carbono que puedan asumir un gran volumen y sean de bajo coste, aunque no estén todavía lo suficientemente desarrolladas.
Hoy en día, las soluciones para eliminar el dióxido de carbono se enfrentan a un verdadero dilema: al tratarse de tecnologías en etapas tempranas, resultan más caras, por lo que no atraen a una masa crítica de clientes. Pero si no se adoptan ampliamente, no se puede ampliar la producción para lograr costes más bajos.
Los primeros en sumarse a la iniciativa pueden ayudar a reducir los costes y aumentar el volumen de las nuevas tecnologías de eliminación de dióxido de carbono. Las curvas de aprendizaje y de experiencia en la fabricación han demostrado en repetidas ocasiones que la implementación y la expansión son fuentes de mejora, un fenómeno que se observa en la secuenciación del ADN, la capacidad de los discos duros y los paneles solares.
Este planteamiento ha conformado las compras iniciales de Stripe y, finalmente, nos ha llevado a lanzar Frontier, un compromiso anticipado de mercado (AMC) para contribuir a la eliminación de dióxido de carbono. El objetivo es transmitir un potente mensaje a los investigadores, emprendedores e inversores de que existe un mercado creciente para estas tecnologías. Somos optimistas; creemos que podemos cambiar la trayectoria del sector y aumentar la probabilidad de que el mundo tenga la cartera de soluciones necesarias para evitar los peores efectos del cambio climático.
Todas las compras se realizan a través de Frontier, un compromiso de mercado por adelantado para la compra de más de 1.000 millones de dólares estadounidenses en proyectos de eliminación permanente de dióxido de carbono antes de 2030. El equipo interno de Frontier, compuesto por especialistas científicos y comerciales, y que cuenta con el apoyo de más de 60 revisores técnicos externos, adquiere y evalúa las tecnologías más prometedoras de eliminación de dióxido de carbono. Explora la cartera de proyectos, lee los criterios que utilizamos para elegirlos o consulta nuestras solicitudes públicas de proyectos.
Descubre lo que buscamos a la hora de evaluar los proyectos.
Consulta las solicitudes que compartimos en GitHub.
Terradot spreads crushed basalt rock onto acidic and nutrient-depleted agricultural soils in Brazil. The rock material absorbs CO₂ from the air and soil, turning it into a form that enters runoff and permanent storage in the ocean.
CarbonRun mejora la capacidad natural de las corrientes fluviales meteorizando piedra caliza abundante y de bajo coste y reduciendo los niveles de acidez de los ríos. Esta técnica beneficia a los ecosistemas fluviales a nivel local y mejora la capacidad de los ríos para capturar CO₂ de la atmósfera. Después, los ríos, que son sistemas naturales de transporte de carbono, depositan el CO₂ en el océano para su almacenamiento permanente en forma de bicarbonato.
Alithic combina un proceso de captura de CO₂ de solventes con un novedoso método de intercambio de iones para la regeneración eficiente de solventes. Este proceso permite reaccionar el CO₂ con desechos industriales y lo actualiza a un material que puede revenderse para producir hormigón bajo en carbono. Su enfoque tiene el potencial de lograr eliminación de baja energía a escala y puede usarse de manera flexible en una amplia gama de materias primas alcalinas.
Alt Carbon distribuye basalto en plantaciones de té en India, a los pies del Himalaya, donde el ambiente caluroso y húmedo ayuda a acelerar la reacción natural con agua para eliminar CO₂ y almacenarlo como bicarbonato duradero. Este proyecto utiliza un novedoso enfoque de verificación con marcadores de metal en el suelo para reducir los costes de medición y entender mejor la erosión en nuevas geografías. Además, el proyecto de Alt Carbon mejora la salud del suelo y ofrece ingresos extra a los agricultores en un sector amenazado por el aumento de los costes y el cambio climático.
Anvil contacta minerales alcalinos altamente reactivos con el CO₂ atmosférico en un sistema de baja energía que acelera el proceso de mineralización. Los minerales carbonato sólidos resultantes se almacenan posteriormente a largo plazo en el lugar para poder medir fácilmente la eliminación. El equipo intenta lograr una materia prima prometedora y acelerar su uso generalizado para la eliminación a escala.
Capture6 utiliza electricidad y agua salada en un sistema electroquímico para eliminar CO₂ y, al mismo tiempo, flujos de desechos industriales. Utilizan tecnologías comprobadas y pueden realizar integraciones flexibles en una amplia gama de procesos industriales para generar subproductos como metales limpios o agua dulce, lo que aumenta la probabilidad de poder escalar de manera rápida y económica. Este proyecto también favorece el avance de la investigación relacionada con el uso productivo de subproductos químicos con bajo contenido de carbono.
Exterra utiliza un proceso termoquímico para transformar desechos de minas en minerales alcalinos de rápida disolución que pueden usarse para eliminar carbono de distintas maneras. Para su proyecto piloto, se asociaron con Planetary para combinar su material en vertidos costeros, donde captura el CO₂ atmosférico y lo almacena de manera duradera en la forma de bicarbonato oceánico. Este proceso elimina los residuos de asbesto para limpiar yacimientos mineros y extrae valiosos metales de bajo contenido de carbono como níquel, que pueden venderse para reducir los costes de eliminación.
Flux acelera la capacidad natural de las rocas para absorber CO₂ a través de la distribución de basalto en granjas en el África Subsahariana, una región con alto potencial de erosión debido a su clima húmedo y tropical. Están presentando la erosión de campos en nuevas regiones y desarrollando una plataforma tecnológica para facilitar las mediciones sólidas y responsables y las implementaciones futuras. Además de almacenar CO₂ como bicarbonato, el basalto ofrece importantes beneficios agrícolas a los agricultores, que históricamente han tenido menos acceso a productos de rectificación del suelo como fertilizantes o tierra caliza.
NULIFE utiliza un proceso denominado licuefacción hidrotérmica para transformar de forma eficiente la biomasa residual húmeda en un biocombustible de transporte económico que se inyecta en el subsuelo para su eliminación permanente. Su proceso puede destruir los contaminantes en la biomasa residual, como las sustancias perfluoroalquiladas y polifluoroalquiladas, además de generar subproductos potencialmente comercializables que reducen el precio de la eliminación de dióxido de carbono.
Planeteers utiliza un novedoso proceso de oscilación de presión para convertir piedra caliza, una materia prima abundante y económica, en minerales carbonatos hidratados, un material de rápida disolución que puede ser una materia prima escalable para una amplia gama de enfoques de eliminación de dióxido de carbono. Su proyecto piloto mezcla este material en desembocaduras de plantas de tratamiento de agua, donde reacciona con el CO₂ en el aire para formar bicarbonatos duraderos. Este enfoque es fácil de medir y aprovecha la infraestructura existente, lo que reduce los costes.
Silica aplica basalto y otras rocas volcánicas en plantaciones de caña de azúcar en México, donde las condiciones cálidas y húmedas aceleran la erosión de los materiales y el almacenamiento de CO₂ como bicarbonato. Son pioneros con su novedoso enfoque que podría hacer que la medición de la eliminación de dióxido de carbono en pequeñas granjas sea más sencilla y económica, y están trabajando con marcas de consumo masivo para demostrar cómo la eliminación de dióxido carbono puede incorporarse en las cadenas de suministro agrícolas.
El sistema de captura de aire directo de 280 Earth tiene un diseño flexible realizado con componentes de venta comercial, y puede tomar energía de distintas fuentes, como electricidad o calor de desechos industriales. Posteriormente, el flujo de CO₂ capturado se almacena de forma permanente.
Exergi está reacondicionando una de sus plantas de calefacción urbanas basadas en biomasa en Estocolmo para capturar el CO₂ producido como subproducto del proceso de combustión. El CO₂ se extrae a partir de la mezcla del gas de combustión con una solución de carbonato de potasio. El bicarbonato de potasio resultante se calienta y se descompone en dióxido de carbono y agua. El dióxido de carbono extraído posteriormente se transporta a otro lugar para su almacenamiento geológico permanente.
Vaulted Deep inyecta residuos orgánicos en pozos duraderos, donde el carbono presente en los residuos se retiene a medida que se descompone. Gracias al uso de una tecnología especializada de inyección de lodos, su proceso es capaz de gestionar una amplia gama de fuentes de carbono orgánico con muy poca energía y procesamiento previo. Este sistema tiene el potencial de implementarse rápidamente a gran escala.
Lithos acelera la capacidad natural de las rocas de absorber CO₂ esparciendo basalto triturado superfino en tierras de cultivo y midiendo empíricamente la eliminación. Son pioneros en una nueva técnica de medición que cuantifica con mayor precisión el carbono eliminado de forma permanente a través de meteorización optimizada.
En escalas de tiempo geológicas, el CO₂ se une químicamente a los minerales y se convierte en piedra de manera permanente. Heirloom está desarrollando una solución de captura directa del aire que acelera este proceso para absorber el CO₂ del aire ambiental en días en lugar de tardar años, y luego extrae el CO₂ para almacenarlo permanentemente bajo tierra.
Las máquinas de captura directa del aire de CarbonCapture utilizan absorbentes sólidos que captan el CO₂ de la atmósfera y liberan CO₂ concentrado al calentarse. La principal innovación de CarbonCapture es hacer que el sistema de captura sea modular y actualizable, para poder intercambiar los mejores absorbentes de su clase a medida que están disponibles. El flujo de CO₂ capturado después se almacena de manera permanente bajo tierra.
Charm Industrial ha creado un novedoso proceso para preparar biocombustibles e inyectarlos en depósitos geológicos. El biocombustible se produce a partir de la biomasa y conserva gran parte del carbono que las plantas capturan naturalmente. Al inyectarlo en depósitos geológicos seguros, se logra que el depósito de carbono sea permanente.
44.01 convierte el CO₂ en rocas al aprovechar la capacidad natural de mineralización. Su tecnología inyecta CO₂ en peridotita, una roca muy común, donde se almacena de forma permanente. Esta solución de almacenamiento se puede utilizar con una gran variedad de tecnologías de captura.
Airhive está desarrollando un sistema geoquímico de captura directa del aire con un absorbente que puede fabricarse a partir de minerales económicos y abundantes. Este absorbente reacciona de forma rápida con el CO₂ atmosférico cuando se mezcla con el aire en el reactor de lecho fluidizado de Airhive. En combinación con un proceso de regeneración eléctrico, se consigue un método prometedor y de bajo coste para la captura directa del aire con el fin de liberar el CO₂ para su almacenamiento geológico.
Alkali Earth utiliza subproductos alcalinos de procesos industriales como grava de eliminación de dióxido de carbono para implementarlos en las carreteras. Estos minerales actúan como depósitos para el CO₂ atmosférico, que lo almacenan de forma permanente al mismo tiempo que cementan las superficies de las calzadas. La formación de minerales que contienen CO₂ dentro de la grava se puede medir directamente, lo que genera resultados fiables en las eliminaciones.
Arbor ha estado desarrollando un enfoque modular y compacto para la eliminación y el almacenamiento de carbono de biomasa (BiCRS), el proceso de eliminación de dióxido de carbono mediante la conversión de residuos de biomasa en productos como electricidad y el almacenamiento permanente de CO₂ bajo tierra. Su tecnología combina un gasificador que puede funcionar de manera flexible en todos los tipos de biomasa con una turbina avanzada que maximiza la eficiencia eléctrica. El sistema modular de Arbor se puede implementar con rapidez y está diseñado para fabricarse a costes sustancialmente más bajos.
Arca captura CO₂ de la atmósfera y lo mineraliza en roca. Trabajan con productores de metales críticos, transformando los desechos mineros en un enorme sumidero de carbono. Con róveres autónomos, su enfoque acelera la mineralización del carbono, un proceso natural que almacena CO₂ de forma permanente como nuevos minerales de carbonato. Mediante la creación de un sistema que funciona directamente en la mina, Arca evita el coste y las emisiones de mover material a las instalaciones de procesamiento.
AspiraDAC está construyendo un sistema modular de captura directa de aire que está alimentado por energía y cuyo suministro de energía está integrado en los módulos. Su armazón metálico-orgánico absorbente no requiere temperaturas elevadas y está fabricado con materiales baratos, y su enfoque modular les permite experimentar con nuevas mejoras de forma más distribuida.
Banyu Carbon utiliza la luz solar para capturar CO₂ del agua del mar. Una molécula reutilizable que se activa con la luz y que se vuelve ácida al exponerse a esta provoca que el carbono disuelto en agua salada se desgasifique como CO₂, que después se almacena de manera permanente. Como solo se necesita una pequeña porción del espectro de luz visible para desencadenar la reacción, este es un método muy eficiente desde el punto de vista energético para la eliminación directa en el océano.
Este proyecto, que es una colaboración entre 8 Rivers' Calcite y Origen, acelera el proceso natural de la mineralización del dióxido de carbono, poniendo en contacto cal apagada y muy reactiva con el aire ambiental para capturar el CO₂. Los minerales de carbonato resultantes se calcinan para crear un flujo de CO₂ concentrado para su almacenamiento geológico, y luego se ponen en bucle de forma continua. El bajo coste de los materiales y la rapidez del ciclo hacen que este enfoque sea prometedor para lograr una captura asequible a escala.
Captura aprovecha el océano para una eliminación escalable mediante el diseño de un proceso electroquímico para separar el ácido y la base del agua de mar. El ácido se usa para eliminar el CO₂ que está presente en el agua de mar, que se inyecta para el almacenamiento geológico permanente. La base se utiliza para tratar y devolver el agua restante de manera segura al océano, y el océano luego extrae más CO₂ de la atmósfera. Captura desarrolla membranas optimizadas para aumentar la eficiencia eléctrica y reducir los costes de eliminación.
CarbonBlue utiliza calcio en un ciclo de circuito cerrado para mineralizar, separar y eliminar el CO₂ disuelto a partir del agua, lo que da lugar a un flujo puro de CO₂ que se puede retener de manera duradera. Su método puede funcionar en agua dulce o salada y aprovechar el calor residual para el proceso de regeneración. El equipo tiene previsto integrarlo en plantas de desalinización y otros sectores de extracción de agua, lo que reduce el consumo energético y los costes.
El proceso de CarbonBuilt convierte fácilmente el CO₂ diluido en carbonato de calcio, lo que crea una alternativa de bajas emisiones de carbono que no compromete el uso del hormigón tradicional. Como solución rentable y escalable para el almacenamiento permanente de CO₂, la plataforma tecnológica de CarbonBuilt puede servir como componente crítico de los futuros sistemas de eliminación de dióxido de carbono mediante la captura directa del aire.
CarbonCure inyecta CO₂ en el hormigón fresco, donde se mineraliza y se almacena de forma permanente a la vez que mejora la resistencia a la compresión del hormigón. Actualmente, la empresa se abastece de CO₂ residual, pero representa una plataforma tecnológica muy prometedora para el almacenamiento permanente de CO₂, que es una parte clave en los sistemas futuros de eliminación de dióxido de carbono.
Phlair está utilizando un proceso conocido como variación electroquímica del pH. Su sistema utiliza un disolvente para capturar el CO₂ y un ácido para liberarlo. Este método está inspirado en una innovación reciente de los electrolizadores y las pilas de combustible de la membrana de intercambio de protones, lo que hace que el proceso sea rentable y eficaz desde el punto de vista energético. A continuación, el CO₂ se somete al proceso de mineralización de Paebbl para su almacenamiento permanente en materiales de construcción.
Carbon To Stone ha estado desarrollando una nueva forma de captura directa de aire, en la que un solvente que une el CO₂ se regenera al reaccionar con materiales de desecho alcalinos. Si se reemplaza la regeneración de solventes convencional usando calor o cambios de presión con mineralización directa de desechos alcalinos de bajo coste como la escoria de acero, el equipo puede reducir en gran medida la energía y, por lo tanto, el coste requerido. El CO₂ se almacena de forma duradera como materiales de carbonato sólido que se pueden utilizar para cementos alternativos.
Cella aumenta las opciones para el almacenamiento seguro de carbono a través de la mineralización. Aceleran el proceso natural que convierte el CO₂ en forma mineral sólida inyectándolo en formaciones de rocas volcánicas junto con agua salina y desechos de salmuera geotérmica, con un enfoque que reduce los costes y minimiza los impactos ambientales. La tecnología de Cella integra calor geotérmico bajo en carbono y se puede combinar con una variedad de métodos de captura.
Climeworks utiliza energía geotérmica renovable y calor residual para capturar el CO₂ directamente del aire, concentrarlo y retenerlo de forma permanente en el subsuelo en formaciones de rocas basálticas con Carbfix. Si bien es cierto que se encuentra en su etapa inicial de expansión, este enfoque obtiene resultados permanentes, es fácil de medir y, en teoría, su capacidad es casi ilimitada.
CREW ha estado construyendo reactores especializados para mejorar la meteorización natural. El sistema basado en contenedores crea condiciones optimizadas para acelerar la meteorización de los minerales alcalinos, y el agua descargada almacena CO₂ de las aguas residuales de forma segura y permanente como iones de bicarbonato en el océano. El sistema de CREW facilita la medición del CO₂ eliminado y puede reaccionar con el CO₂ de una variedad de fuentes, incluidos los sistemas de captura directa del aire y biomasa, para maximizar la escala.
EDAC Labs utiliza un proceso electroquímico para producir ácidos y bases. Los ácidos se utilizan para iniciar la recuperación de metales valiosos a partir de los residuos de la minería, y las bases se utilizan para capturar CO₂ del aire. A continuación, se combinan los flujos de ácidos y bases para producir metales (que se pueden vender para utilizarse como baterías) y carbonatos sólidos (que almacenan CO₂ de forma permanente).
Ebb Carbon mitiga la acidificación de los océanos mientras captura CO₂. Mediante el uso de membranas y electroquímica, Ebb elimina el ácido del océano y mejora su capacidad natural para agotar el CO₂ del aire y almacenarlo como bicarbonato oceánico.
Eion acelera la meteorización de los minerales incorporando rocas de silicato al suelo. Agricultores y ganaderos utilizan su producto granulado para aumentar el nivel de carbono en el suelo, el cual, con el tiempo, encuentra su camino hacia el mar donde se almacena de forma permanente en forma de bicarbonato. Junto con su tecnología de desarrollo, Eion también está llevando a cabo un novedoso estudio de suelos para mejorar la medición de la absorción de CO₂ del campo.
Equatic aprovecha la energía y la magnitud de los océanos del mundo para eliminar el dióxido de carbono. Su proceso electroquímico experimental captura el CO₂ en el agua del mar en forma de carbonatos, un material inerte similar a las conchas marinas, lo que permite una eliminación de CO₂ permanente y eficiente desde el punto de vista energético.
Holocene captura CO₂ del aire utilizando moléculas orgánicas que se pueden producir a bajo coste. En el primer paso de este proceso, el CO₂ se captura del aire cuando entra en contacto con una solución líquida. En el segundo paso, una reacción química cristaliza el material y se convierte en sólido. Ese sólido se calienta hasta liberar el CO₂, lo que minimiza la energía que se desperdicia para calentar el agua. El proceso de Holocene se realiza a temperaturas bajas, lo que reduce aún más la energía necesaria, aumenta la flexibilidad energética y minimiza el coste general.
Inplanet acelera la meteorización mineral natural para retener CO₂ de forma permanente y regenerar los suelos tropicales. Se asocian con los agricultores para aplicar polvos de roca de silicato seguros en condiciones más cálidas y húmedas que pueden generar tasas de meteorización más rápidas y, por lo tanto, una extracción de CO₂ más rápida. El equipo ha estado desarrollando estaciones de supervisión para generar datos de prueba de campo públicos para aumentar la comprensión del campo de cómo las tasas de meteorización varían en el suelo tropical y las condiciones climáticas en todo Brasil.
Kodama y Yale Carbon Containment Lab han estado implementando un método de prueba de concepto para almacenar residuos de biomasa leñosa enterrándolos en cámaras anóxicas subterráneas, evitando la descomposición. El equipo experimentará cómo las condiciones de la cámara y las perturbaciones sobre el suelo afectan la durabilidad y el riesgo de retroceso.
Living Carbon quiere diseñar algas que produzcan rápidamente esporopolenina, un biopolímero muy duradero que puede secarse, cosecharse y almacenarse. El objetivo de la investigación inicial es entender mejor la opinión de los expertos en este campo sobre la durabilidad de la esporopolenina, así como la cepa de algas óptima, con el fin de producirla rápidamente. La aplicación de herramientas de biología sintética a la ingeniería de sistemas naturales para mejorar la captura de dióxido de carbono y para hacerla más duradera puede proporcionar una vía de eliminación de bajo coste y escalable.
Mati aplica polvo de roca de silicato a terrenos agrícolas, comenzando por los arrozales de la India. Estas rocas reaccionan con el agua y el CO₂ para producir carbono inorgánico disuelto que después se almacena en la cuenca hidrográfica local y, finalmente, en el océano. Mati depende de las inundaciones de los arrozales y de las elevadas temperaturas subtropicales para acelerar la meteorización, así como del muestreo extensivo y del modelado de suelos y ríos para medir la eliminación y proporcionar beneficios adicionales a los pequeños agricultores.
Mission Zero elimina electroquímicamente el CO₂ del aire y lo concentra para retenerlo de diferentes maneras. Su proceso experimental a temperatura ambiente puede funcionar con electricidad limpia y tiene el potencial de reducir los costes y lograr volúmenes elevados utilizando equipos modulares disponibles en el mercado.
Nitricity ha estado explorando el potencial de integrar la eliminación de dióxido de carbono en un proceso novedoso para la producción electrificada de fertilizantes limpios. Este proceso combina compuestos de nitrógeno neutros en carbono, roca fosfórica y CO₂, produciendo nitrofosfatos para el sector de los fertilizantes y almacenando CO₂ de forma duradera como piedra caliza. Esta nueva vía podría presentar una solución de almacenamiento de bajo coste para los flujos de CO₂ diluidos con beneficios colaterales de descarbonizar el sector de los fertilizantes.
Planetary aprovecha el océano para una eliminación escalable. Introduce materiales alcalinos en desembocaduras oceánicas, como plantas de tratamiento de aguas residuales y circuitos de refrigeración de centrales eléctricas. Este procedimiento acelera la retención de CO₂ de manera segura y permanente en forma de iones de bicarbonato en el océano. A continuación, Planetary verifica la eliminación mediante técnicas avanzadas de medición y modelización.
El Proyecto Vesta captura el CO₂ mediante el uso del olivino, un mineral que se encuentra en abundancia en la naturaleza. Las olas del mar pulverizan el olivino, con lo que aumentan la superficie del mineral. A medida que el olivino se descompone, captura el CO₂ de la atmósfera desde el mar y lo estabiliza en forma de piedra caliza en el fondo marino.
RepAir usa electricidad limpia para capturar CO₂ del aire mediante una novedosa célula electroquímica, y está asociada con Carbfix para inyectar y mineralizar el CO₂ bajo tierra. La eficiencia energética demostrada de la captura de RepAir ya es notable y sigue mejorando. Este enfoque tiene el potencial de ofrecer una eliminación de dióxido de carbono de bajo coste que minimiza la tensión que este proceso añadió a la red eléctrica.
Spiritus utiliza un absorbente fabricado a partir de materiales disponibles en el mercado y un contactor de aire pasivo que necesita muy poca energía para capturar el CO₂. A continuación, el absorbente saturado de CO₂ se regenera utilizando un novedoso proceso de desorción, que captura el CO₂ y permite volver a utilizar el absorbente con menos energía que una cámara de vacío de alto calor como las que suelen usarse en los métodos de captura de aire directa. Así, la combinación de este absorbente económico y de alto rendimiento y una menor energía de regeneración permite reducir costes.
Sustaera utiliza contactores de aire con monolito cerámico para capturar CO₂ directamente del aire y almacenarlo de forma permanente bajo tierra. Su sistema de captura directa del aire, alimentado con energía que no emite carbono y fabricado con componentes modulares, está diseñado para lograr una rápida fabricación y captura a gran escala.
Travertine está rediseñando la producción química para la eliminación del dióxido de carbono. Travertine utiliza la electroquímica para producir ácido sulfúrico para acelerar la meteorización de los residuos mineros ultramáficos, lo que libera elementos reactivos que convierten el dióxido de carbono del aire en minerales de carbonato estables en escalas de tiempo geológicas. Su proceso convierte los residuos mineros en una fuente de eliminación de dióxido de carbono y en materias primas para otras tecnologías limpias de transición, como las baterías.
UNDO esparce roca basáltica triturada en tierras agrícolas, lo que acelera el proceso natural de erosión de las rocas. El CO₂ disuelto en el agua de lluvia reacciona con la roca, se mineraliza y se almacena de forma segura como bicarbonato en escalas de tiempo geológicas. El equipo ha estado realizando pruebas de laboratorio y de campo para aumentar la evidencia de la meteorización mejorada de las rocas como una tecnología permanente, escalable e impulsada por la naturaleza para la eliminación de dióxido de carbono.
Arbon utiliza un proceso de «cambio de humedad» para capturar CO₂ del aire. El absorbente une el CO₂ cuando está seco y lo libera cuando está húmedo. Este proceso utiliza menos energía que los métodos que dependen de la variación de temperatura y de presión para liberar CO₂. Se ha demostrado que la capacidad del absorbente para unir CO₂ permanece estable durante miles de ciclos. Estas dos innovaciones pueden reducir el coste de la captura directa del aire.
Vycarb utiliza un reactor para añadir alcalinidad de piedra caliza al agua oceánica costera, lo que da lugar a la disminución y almacenamiento del CO₂ de la atmósfera. Este sistema de disolución tiene un novedoso aparato de detección que analiza la base del agua, disuelve carbonato de calcio y dosifica la alcalinidad en el agua en una cantidad controlada segura para su dispersión. Su sistema cerrado facilita la medición de la cantidad de alcalinidad disuelta añadida y de CO₂ eliminado.
Carboniferous hunde gran cantidad de fibras de cañas de azúcar y rastrojos de maíz restantes en cuencas profundas de agua salada y sin oxígeno en el Golfo de México. La falta de oxígeno en entornos (y, por tanto, la ausencia de animales y de la mayoría de los microorganismos) ralentiza la descomposición de la biomasa, por lo que se conserva y se almacena de manera eficaz y duradera en los sedimentos oceánicos. El equipo llevará a cabo experimentos para determinar la estabilidad funcional de la biomasa hundida, además de la interacción con la biogeoquímica oceánica.
Rewind utiliza barcos con grúas para hundir los residuos agrícolas y forestales en el fondo sin oxígeno del mar Negro, la mayor masa de agua anóxica de la Tierra. El agua sin oxígeno ralentiza drásticamente la descomposición de la biomasa. La inexistencia de organismos vivos en el mar Negro limita cualquier posible riesgo para el ecosistema. Este proceso permite una eliminación de dióxido de carbono asequible y segura para el medio ambiente.