Remova carbono à medida que sua empresa cresce

Com alguns cliques, o Stripe Climate pode contribuir uma fração das suas receitas para ajudar na expansão de tecnologias emergentes de remoção de carbono. Junte-se a um grupo ambicioso de empresas que quer mudar as perspectivas das mudanças climáticas.

Cadastre-se em um minuto

Contribua uma pequena porcentagem das suas receitas para financiar tecnologias de remoção de carbono permanente com apenas alguns cliques no seu Dashboard.

Financie a remoção permanente de carbono

Direcionamos 100% da sua contribuição para a remoção de carbono. Os projetos de remoção da carbono são contratados e selecionados pela Frontier, uma equipe interna da Stripe com especialistas científicos e comerciais.

É fácil divulgar

Comunique aos seus clientes o seu compromisso com o novo distintivo atualizado automaticamente no checkout, nos recibos e faturas hospedados pela Stripe. Nosso kit de materiais permite usar com facilidade o distintivo onde você quiser.

Agora disponível para empresas do mundo todo

Precisamos de um esforço coletivo global para expandir a remoção de carbono. O Stripe Climate está disponível para usuários da Stripe no mundo todo.

Pioneiros

Junte-se a empresas visionárias

Um grupo crescente de pioneiros está ajudando a mudar a trajetória da remoção de carbono.

Em defesa do financiamento das remoções de carbono

A remoção de carbono é fundamental para combater as mudanças climáticas

Para impedir os efeitos mais catastróficos da mudança climática, devemos procurar limitar o aumento médio da temperatura global a 1,5 °C acima dos níveis pré-industriais, o que corresponderia a uma redução global das cerca de 40 gigatoneladas de emissões de CO₂ ao ano em 2018 para zero emissão líquida em 2050.

Para conseguir isso, é provável que o mundo precise reduzir drasticamente as novas emissões e remover o carbono que já está na atmosfera.

Trajetória para limitar o aumento global de temperatura a ~1,5 °C
Limitar o aumento global de temperatura a:
Histórico de emissões Trajetória de ~2 °C Trajetória de ~1,5 °C Trajetória atual
Remoção de carbono necessária para limitar o aumento global de temperatura a ~1,5 °C.
Histórico de emissões do Global Carbon Project1. "Trajetória atual" mostra os roteiros de remoção do SSP4-6.02,3 adaptados do CICERO4. Para simplificar, este gráfico mostra apenas o CO₂, mas os cenários modelados consideram outras emissões de gás do efeito estufa. Todos eles precisam ser reduzidos.

Mas a remoção de carbono está obsoleta

As soluções de remoção de carbono atuais, como reflorestamento e sequestro de carbono do solo, são importantes, mas provavelmente não são suficientes para dar conta da dimensão do problema. É preciso desenvolver novas tecnologias de remoção de carbono, com potencial para atingir alto volume e baixo custo antes de 2050, mesmo que ainda não estejam maduras no momento.

Hoje, as soluções de remoção de carbono enfrentam o dilema do ovo e da galinha: por serem tecnologias novas, são muito caras e não atraem um alto número de clientes. Mas, se não forem adotadas por mais usuários, não alcançarão a escala de produção necessária para se tornarem mais baratas.

Os primeiros usuários podem mudar os rumos da remoção de carbono

Os primeiros compradores podem ajudar a diminuir o custo e aumentar o volume das novas tecnologias de remoção de carbono. As experiências com as curvas de aprendizado e experiência em manufatura já comprovaram repetidas vezes que a implementação e a escala proporcionam melhorias, um fenômeno testemunhado no sequenciamento de DNA, na capacidade de discos rígidos e em painéis solares.

Esse pensamento modelou as compras iniciais da Stripe e nos levou a lançar a Frontier, um compromisso de mercado antecipado (AMC) para comprar remoções de carbono. O objetivo é enviar um forte sinal de demanda a pesquisadores, empreendedores e investidores, indicando a existência de um mercado crescente para essas tecnologias. Estamos otimistas com a possibilidade de alterar os rumos do setor e aumentar a probabilidade de que o mundo conte com o portfólio de soluções necessário para evitar os efeitos mais graves das mudanças climáticas.

Representação estilizada de curvas de experiência do Santa Fe Institute5.

Como encontramos e financiamos

Nosso portfólio e revisores científicos

Para comprar remoções de carbono, o Stripe Climate trabalha com a Frontier, uma equipe interna da Stripe de especialistas científicos e comerciais dedicada a tecnologias de remoção de carbono. Um grupo multidisciplinar de cientistas especializados assessora a Frontier para ajudar a avaliar as tecnologias de remoção de carbono mais promissoras. Conheça o crescente portfólio de projetos, leia os critérios que usamos na seleção e veja as inscrições feitas no processo aberto de seleção.

Critérios desejados

Veja o que procuramos quando avaliamos projetos.

Candidaturas de projetos

Veja as inscrições feitas no processo aberto de seleção.

Nosso portfólio

Projetos do 4º trimestre de 2023

A Airhive está desenvolvendo um sistema geoquímico de captura direta do ar com um sorvente que pode ser fabricado com minerais baratos e abundantes. O sorvente reage rapidamente com o CO₂ atmosférico quando misturado com ar no reator de leito fluidizado da Airhive. Acoplado a um processo de regeneração movido a eletricidade para liberar o CO₂ para armazenamento geológico, é uma abordagem promissora para a remoção direta de baixo custo.

A Alkali Earth usa subprodutos alcalinos de processos industriais para criar um cascalho para aplicação em estradas. Os minerais atraem o gás carbônico do ar, armazenando-o permanentemente e fortalecendo o pavimento. A formação de minerais carbonatados no cascalho pode ser medida diretamente, o que gera alta confiança nos resultados de remoção.

A Banyu usa a luz solar para capturar CO₂ da água do mar. Uma molécula reutilizável, que se torna ácida quando exposta à luz, desgaseifica o CO₂ dissolvido na água do mar, que é então armazenado permanentemente. Como apenas uma fração do espectro de luz visível é necessária para desencadear a reação, o processo apresenta alta eficiência na remoção direta do oceano.

A Carbon Atlantis adota um processo conhecido como oscilação eletroquímica de pH, que consiste em um solvente para capturar CO₂ e um ácido para liberá-lo. O sistema se baseia na recente inovação das células de combustível da membrana de troca protônica e eletrolisadores, um processo econômico e energeticamente eficiente. O CO₂ é mineralizado pela Paebbl para armazenamento permanente em materiais de construção.

A CarbonBlue adota um ciclo fechado de cálcio para mineralizar, separar e remover o CO₂ dissolvido da água, gerando um fluxo puro de CO₂ que pode ser sequestrado com segurança. Essa abordagem funciona em água doce ou salgada e pode usar calor residual no processo de regeneração. A equipe pretende se associar a usinas de dessalinização e outras indústrias consumidoras de água para reduzir o uso de energia e os custos.

A CarbonRun otimiza a intemperização natural promovida pelas correntes fluviais com o desgaste de quantidades abundantes e de baixo custo de calcário para reduzir a acidez dos rios. Isso favorece os ecossistemas fluviais e permite a captura de mais CO₂ da atmosfera. Os rios, que são sistemas naturais de transporte de carbono, conduzem o CO₂ para o oceano, armazenando-o permanentemente sob a forma de bicarbonato.

A EDAC Labs adota um processo eletroquímico para produzir um ácido e uma base. O ácido é usado para iniciar a recuperação de metais valiosos em rejeitos de mineração, e a base é usada para capturar CO₂ do ar. As correntes de ácido e base são então combinadas e produzem metais, que podem ser vendidos para a fabricação de produtos como baterias, e também carbonatos sólidos, que armazenam CO₂ permanentemente.

A Holocene captura CO₂ do ar através de moléculas orgânicas produzidas a baixo custo. Na primeira etapa do processo, o CO₂ é capturado do ar quando entra em contato com uma solução líquida. Na segunda, uma reação química cristaliza o material em um sólido, aquecido subsequentemente para liberar o CO₂ e minimizar a energia desperdiçada no aquecimento da água. O processo funciona em baixa temperatura, o que contribui para reduzir ainda mais o gasto energético, aumentar a flexibilidade energética e diminuir o custo total.

A Mati aplica silicatos em pó a campos agrícolas, tendo iniciado suas operações em arrozais da Índia. As rochas reagem com a água e o CO₂ e produzem carbono inorgânico dissolvido, que é depositado primeiro na bacia hidrográfica local e finalmente no oceano. A Mati aproveita as cheias dos arrozais e as elevadas temperaturas subtropicais para acelerar a intemperização, além de conduzir extensa amostragem e modelagem de solos e rios para medir a remoção e fornecer benefícios adicionais para pequenos agricultores.

A Planetary aproveita o potencial de remoção em escala do oceano. Os minerais alcalinos são despejados em emissários oceânicos de estações de tratamento de esgoto ou sistemas de arrefecimento de estações elétricas, acelerando com segurança o sequestro permanente de CO₂ em forma de íons de bicarbonato no oceano. A Planetary verifica a remoção com técnicas avançadas de medição e modelagem.

A Spiritus usa um sorvente feito com materiais comercialmente disponíveis e um contator a ar passivo que exige pouca energia para capturar CO₂. O sorvente saturado com CO₂ é regenerado através de um novo processo de dessorção, o que permite sua reutilização com menos gasto de energia do que o das câmaras a vácuo em alta temperatura geralmente usadas na captura direta do ar. Esse sorvente econômico de alto desempenho e baixo gasto de energia reduz o custo geral do processo.

A Vaulted Deep injeta resíduos orgânicos em poços duráveis, onde o carbono decomposto é sequestrado. Com uma tecnologia especializada de injeção de pasta, o processo opera com as mais diversas fontes de carbono e tem baixa exigência de energia e processamento antecipado. O sistema pode ser implementado rapidamente em larga escala.

A Arbon usa um processo de "oscilação de umidade" para capturar CO₂ do ar. O sorvente liga o CO₂ quando seco e o libera quando úmido, em um processo que gasta menos energia do que abordagens que dependem de mudanças de temperatura e pressão para liberar CO₂. A capacidade do sorvente de ligar CO₂ mostrou-se estável ao longo de milhares de ciclos. Ambas as inovações têm potencial para reduzir o custo da captura direta do ar.

A Vycarb usa um reator para adicionar a alcalinidade do calcário a águas oceânicas litorâneas, provocando a captura e o armazenamento do CO₂ da atmosfera. O sistema tem um novo sensor que testa a água, dissolve o carbonato de cálcio e dosa a alcalinidade em quantidade controlada e segura para dispersão na água. O sistema fechado facilita a medição da quantidade de alcalinos dissolvidos e do CO₂ removido.

A Carboniferous submerge fardos de bagaço de cana-de-açúcar e palha de milho em bacias profundas, salgadas e desoxigenadas do Golfo do México. A falta de oxigênio nesses ambientes impede a presença de animais e da maioria dos micróbios e retarda a decomposição da biomassa, preservando-a e armazenando-a de forma eficiente e estável nos sedimentos oceânicos. A equipe testará e estabelecerá a estabilidade funcional da biomassa submersa, bem como sua interação com a biogeoquímica oceânica.

A Rewind usa barcos com gruas para submergir resíduos agriculturais e florestais no fundo desoxigenado do Mar Negro, o maior corpo d'água anóxico da Terra. A água desoxigenada retarda radicalmente a decomposição da biomassa, e a falta de organismos vivos no Mar Negro limita os riscos ao ecossistema. O processo permite uma remoção de carbono econômica com segurança ambiental.

Conselho de revisão técnica

Dr. Brentan Alexander

Tuatara Advisory
Tecnologia para o mercado

Dr.ª Stephanie Arcusa

Arizona State University
Governança

Habib Azarabadi, PhD

Universidade do Estado do Arizona
Captura direta do ar

Dr. Damian Brady

Darling Marine Center University of Maine
Oceanos

Dr. Robert Brown

Iowa State University
Biochar

Holly Jean Buck, PhD

Universidade de Buffalo
Governança

Dr. Liam Bullock

Geosciences Barcelona
Geoquímica

Wil Burns, PhD

Universidade Northwestern
Governança

Dr.ª Micaela Taborga Claure

Repsol
Captura direta do ar

Struan Coleman

Darling Marine Center University of Maine
Oceanos

Dr. Niall Mac Dowell

Imperial College London
Biomassa/bioenergia

Anna Dubowik

Plataforma de emissões negativas
Governança

Petrissa Eckle, PhD

ETH Zurich
Sistemas de energia

Erika Foster, PhD

Point Blue Conservation Science
Ecologia de ecossistemas

Dr. Matteo Gazzani

Utrecht University Copernicus Institute of Sustainable Development
Captura direta do ar

Dra. Lauren Gifford

University of Arizona’s School of Geography, Development & Environment
Governança

Sophie Gill

Departamento de Ciências da Terra da Universidade de Oxford
Oceanos

Dr.ª Emily Grubert

University of Notre Dame
Governança

Steve Hamburg, PhD

Environmental Defense Fund
Ecologia de ecossistemas

Booz Allen Hamilton

Energy Technology Team
Biomassa/Captura direta do ar

Dr. Jens Hartmann

Universität Hamburg
Geoquímica

Dra. Anna-Maria Hubert

University of Calgary Faculty of Law
Governança

Lennart Joos, PhD

Out of the Blue
Oceanos

Dr. Marc von Keitz

Grantham Foundation for the Protection of the Environment
Oceanos/Biomassa

Dr.ª Yayuan Liu

Johns Hopkins University
Eletroquímica

Dr. Matthew Long

National Center for Atmospheric Research
Oceanos

Susana García López, PhD

Universidade Heriot-Watt
Captura direta do ar

Kate Maher, PhD

Stanford Woods Institute for the Environment
Geoquímica

Dr. John Marano

JM Energy Consulting
Tecnologia para o mercado

Dr. Dan Maxbauer

Carleton College
Geoquímica

Alexander Muroyama, PhD

Paul Scherrer Institut
Eletroquímica

Dr.ª Sara Nawaz

University of Oxford
Governança

Dr.ª Rebecca Neumann

University of Washington
Biochar/Geoquímica

NexantECA

Energy Technology Team
Biomassa/Captura direta do ar

Daniel Nothaft, PhD

Universidade da Pensilvânia
Mineralização

Dr. Simon Pang

Lawrence Livermore National Laboratory
Captura direta do ar

Dra. Teagen Quilichini

Canadian National Research Council
Biologia

Zach Quinlan

Scripps Institution of Oceanography
Oceanos

Dr. Mim Rahimi

University of Houston
Eletroquímica

Vikram Rao, PhD

Research Triangle Energy Consortium
Mineralização

Dr. Paul Reginato

Innovative Genomics Institute at UC Berkeley
Biotecnologia

Dra. Debra Reinhart

University of Central Florida
Gestão de resíduos

Phil Renforth, PhD

Universidade Heriot-Watt
Mineralização

Sarah Saltzer, PhD

Stanford Center for Carbon Storage
Armazenamento geológico

Dr. Saran Sohi

University of Edinburgh
Biochar

Dr. Mijndert van der Spek

Universidade Heriot-Watt
Captura direta do ar

Max Tuttman

The AdHoc Group
Tecnologia para o mercado

Shannon Valley, PhD

Woods Hole Oceanographic Institution
Oceanos

Dr. Jayme Walenta

University of Texas, Austin
Governança

Frances Wang

ClimateWorks Foundation
Governança

Dr. Fabiano Ximenes

New South Wales Department of Primary Industries
Biomassa/bioenergia

Perguntas frequentes

Veja as respostas a perguntas frequentes sobre o Stripe Climate.