Rimozione del carbonio di pari passo con la crescita aziendale

Stripe Climate rappresenta il modo più facile per favorire il lancio e la diffusione di promettenti tecnologie per la rimozione permanente del carbonio. Entra a far parte di un gruppo sempre più numeroso di attività ambiziose che stanno cambiando il corso degli eventi a favore dell'ambiente.

Inizia

Scegli la soluzione in linea con le tue esigenze

Ci sono due modi per contribuire in anticipo alla rimozione del carbonio con Stripe Climate. Tutti gli acquisti sono resi possibili da Frontier, un impegno anticipato sul mercato per l'acquisto iniziale di rimozione permanente del carbonio per oltre un miliardo di dollari entro il 2030.

Climate Commitments

Con pochi clic, puoi devolvere una percentuale dei tuoi ricavi a sostegno delle aziende che iniziano a muovere i primi passi nel campo della rimozione del carbonio e che fanno parte del portafoglio Frontier per passare dalla fase laboratoriale a progetti reali. Si tratta della scelta ottimale per le attività a cui interessa principalmente catalizzare il settore e che non hanno la necessità di acquistare un numero specifico di tonnellate per raggiungere un obiettivo climatico.

Climate Orders

Preordina un determinato numero di tonnellate tramite la Dashboard o l'API Stripe. Le tonnellate saranno fornite tramite il portafoglio offtake di Frontier. Si tratta della scelta ottimale per le attività che devono acquistare un numero specifico di tonnellate per raggiungere un obiettivo climatico o che vogliono proporre la rimozione del carbonio ai propri clienti.

Se puoi impegnarti con l'acquisto di rimozione del carbonio per diversi anni e parecchi milioni di dollari, prendi in considerazione la possibilità di entrare a far parte di Frontier. Puoi anche procedere con un contributo una tantum.

Perché finanziare la rimozione del carbonio

La rimozione del carbonio è fondamentale per contrastare i cambiamenti climatici

Per evitare gli effetti più catastrofici dei cambiamenti climatici, dobbiamo mirare a limitare l'aumento medio globale della temperatura a 1,5 °C in più rispetto ai livelli preindustriali, obiettivo che corrisponde a una riduzione delle emissioni globali di CO₂ da 40 miliardi di tonnellate annue del 2018 allo 0 netto entro il 2050.

Per giungere a questo obiettivo, il mondo dovrà ridurre radicalmente le nuove emissioni e, al tempo stesso, rimuovere il carbonio già presente nell'atmosfera.

Percorso per limitare l'innalzamento della temperatura globale a circa 1,5 °C.
Limitare l'innalzamento delle temperature globali a:
Storico emissioni Percorso di circa 2 °C Percorso di circa 1,5 °C Percorso attuale
Rimozione del carbonio necessaria per limitare l'innalzamento della temperatura globale a circa 1,5 °C.
Storico emissioni a cura del Global Carbon Project.1 "Percorso attuale" mostra i percorsi di rimozione SSP4-6.0,2,3 adottati da CICERO.4 Per semplicità, il grafico mostra solo la CO₂, sebbene gli scenari presentati giustifichino altre emissioni di gas serra, le quali dovranno essere tutte ridotte.

Tuttavia, la rimozione del carbonio è in ritardo

Le soluzioni esistenti per la rimozione del carbonio, come il rimboschimento e il sequestro del carbonio nel suolo, sono importanti, ma non sufficienti a risolvere il problema in tutta la sua vastità. È necessario sviluppare nuove tecnologie di rimozione del carbonio in grado di funzionare a basso costo e di intervenire su volumi elevati entro il 2050, anche se ancora non sono del tutto pronte.

Oggi, le soluzioni di rimozione del carbonio affrontano un circolo vizioso: in quanto tecnologie di nuova concezione sono costose e non riescono ad attrarre una percentuale significativa di clienti, ma fintanto che non si raggiungerà una più vasta diffusione non sarà possibile incrementarne la produzione per ridurre i costi.

I primi aderenti all'iniziativa possono modificare il corso della rimozione del carbonio

I primi aderenti all'iniziativa possono contribuire ad abbassare i costi e ad aumentare il volume delle nuove tecnologie di rimozione del carbonio. Le curve di apprendimento e di esperienza relative alla produzione hanno dimostrato più volte che l'adozione e la diffusione su vasta scala producono miglioramenti, così come osservato per il sequenziamento del DNA, per la capacità degli hard disk e per i pannelli solari.

Questo modo di pensare ha influenzato gli acquisti iniziali di Stripe e ci ha portato a lanciare Frontier, un impegno anticipato sul mercato per la rimozione del carbonio. L'obiettivo è inviare un segnale forte in termini di domanda a ricercatori, imprenditori e investitori: c'è un mercato in crescita per queste tecnologie. Siamo certi che riusciremo a cambiare la tendenza del settore e ad aumentare la probabilità di trovare le soluzioni necessarie di cui il mondo ha bisogno per scongiurare gli effetti più catastrofici dei cambiamenti climatici.

Rappresentazione stilizzata delle curve dell'esperienza fornite dal Santa Fe Institute.5

I nostri metodi di ricerca e di finanziamento

Le nostre proposte e i revisori scientifici

Tutti gli acquisti sono resi possibili da Frontier, un impegno anticipato su mercato di acquistare oltre 1 miliardo di dollari di rimozione permanente di carbonio entro il 2030. Il team interno di scienziati ed esperti commerciali di Frontier, supportato da oltre 60 revisori tecnici esterni, finanzia e valuta le tecnologie di rimozione del carbonio più promettenti. Dai un'occhiata al nostro portafoglio senmpre più ricco di progetti, leggi i criteri che adottiamo per selezionarli o scopri i progetti open source che sono candidati al programma.

Criteri

Scopri come valutiamo i progetti.

Progetti candidati

Scopri i progetti open source che si sono candidati al programma.

Planetary project image

Planetary aggiunge minerali alcalini alle acque superficiali costiere per catturare la CO₂. Con questo offtake, Planetary sta ampliando il progetto pilota che ha prodotto le prime tonnellate verificate al mondo di alcalinità oceanica potenziata e sta avviando la fase successiva dell'operazione con consegne a partire dal 2026.

Arbor project image

Pergola utilizza biomasse di scarto per produrre energia pulita e catturare CO₂. Questo offtake consentirà il lancio del primo impianto commerciale di Arbor. Verrà inoltre testata la fattibilità di un nuovo approccio BECCS che ha un tasso di cattura della CO₂ del 99% e può generare fino a 1.000 kWh di energia pulita per tonnellata di CO₂ rimossa.

Hafslund Celsio project image

Hafslund Celsio è il più grande fornitore di teleriscaldamento in Norvegia. L'azienda propone di ammodernare l'impianto di termovalorizzazione di Klemetsrud con un'unità di cattura della CO₂, seguita da stoccaggio intermedio di CO₂ nel porto di Oslo, trasporto via nave nel Mare del Nord e sequestro geologico a Northern Lights.

Eion project image

Eion accelera l'erosione minerale miscelando silicati al terreno. Il prodotto pellettizzato viene applicato nel terreno da coltivatori e allevatori per aumentare la presenza di carbonio, operazione che a lungo termine porta al suo arrivo nell'oceano, dove viene stoccato in modo permanente sotto forma di bicarbonato. Oltre allo sviluppo di tale tecnologia, Eion sta anche conducendo un nuovo studio del terreno per migliorare la misurazione dell'assorbimento di CO₂.

Phlair project image

Phlair sta sviluppando un approccio elettrochimico alla cattura diretta dall'aria che sia efficiente dal punto di vista energetico e concepito per funzionare con fonti di energia rinnovabili intermittenti, come l'energia solare. Questo offtake supporterà il primo impianto su scala commerciale di Phlair in Alberta, Canada.

CREW project image

CREW sta realizzando dei reattori specializzati per ottimizzare la degradazione naturale. Questo sistema basato su container crea le condizioni ottimali per accelerare la degradazione di minerali alcalini, mentre l'acqua scaricata trattiene la CO₂ proveniente dalle acque di scarico in modo sicuro e permanente sotto forma di ioni di bicarbonato negli oceani. Il sistema di CREW semplifica la misurazione della CO₂ rimossa ed è in grado di reagire con la CO₂ proveniente da fonti diverse, compresi la cattura diretta dall'aria e i sistemi a biomassa, per massimizzare la scalabilità.

Terradot project image

Terradot sparge roccia basaltica frantumata su terreni agricoli acidi e poveri di nutrienti in Brasile. Il materiale roccioso assorbe la CO₂ dall'aria e dal suolo, trasformandola in una forma che viene immessa nel deflusso e nello stoccaggio permanente nell'oceano.

CarbonRun project image

CarbonRun aggiunge calcare polverizzato ai fiumi per aumentarne il pH, conservando la CO₂ come bicarbonato dissolto nei fiumi e, infine, negli oceani. Oltre a rimuovere la CO₂, il lavoro di CarbonRun offre vantaggi agli ecosistemi fluviali locali aumentandone il pH.

280 Earth project image

Il sistema continuo di cattura diretta dall'aria di 280 Earth è un progetto flessibile costruito con componenti disponibili in commercio ed è in grado di ricavare energia da diverse fonti, come l'elettricità o il calore prodotto dai rifiuti industriali. Il flusso di CO₂ catturato viene quindi stoccato in modo permanente.

Exergi project image

Exergi sta potenziando uno degli impianti di riscaldamento basati su biomasse a Stoccolma per catturare la CO₂ prodotta come effetto collaterale del processo di combustione. La CO₂ viene estratta dal gas di combustione mediante la miscelazione con una soluzione a base di carbonato di potassio. Il bicarbonato di potassio risultante viene scaldato e scisso in anidride carbonica e acqua. L'anidride carbonica prodotta viene quindi trasportata lontano per lo stoccaggio geologico permanente.

Vaulted Deep project image

Vaulted inietta biomassa di scarto organica ricca di carbonio in profondità nel sottosuolo per uno stoccaggio permanente. Questa modalità di smaltimento sostituisce anche pratiche di smaltimento dannose come l'applicazione al terreno e l'incenerimento. Come spin-off di un'azienda affermata nel settore dello smaltimento dei rifiuti, Vaulted beneficia di infrastrutture già autorizzate e di un team con una lunga esperienza operativa.

Lithos project image

Lithos accelera la capacità naturale delle rocce di assorbire la CO₂ spargendo basalto polverizzato sui terreni coltivati e misurando la rimozione in modo empirico. Ha aperto la strada a una nuova tecnica di misurazione che quantifica in modo più accurato il carbonio rimosso in modo permanente dalla degradazione avanzata.

Heirloom project image

Nel corso di ere geologiche, la CO₂ si lega chimicamente ai minerali trasformandosi in modo definitivo in pietra. Heirloom sta lavorando a una soluzione per la cattura diretta dall'aria che accelera questo processo, al fine di assorbire la CO₂ in giorni anziché in anni, estraendo poi quella che andrà conservata nel sottosuolo in modo permanente.

CarbonCapture Inc. project image

Le macchine per la cattura diretta dall'aria di CarbonCapture usano agenti di assorbimento solidi che sequestrano la CO₂ dall'atmosfera e rilasciano CO₂ concentrata quando vengono riscaldati. L'innovazione principale di CarbonCapture è aver reso il sistema di cattura modulare e aggiornabile in modo da poter utilizzare sempre gli agenti assorbenti migliori man mano che si rendono disponibili. Il flusso di CO₂ catturato viene, quindi, conservato in modo permanente nel sottosuolo.

Charm Industrial project image

Charm Industrial ha ideato un processo innovativo per la preparazione e l'iniezione di bio-olio nei depositi geologici. Tale bio-olio viene prodotto dalle biomasse e mantiene gran parte del carbonio catturato naturalmente dalle piante. Iniettandolo in un deposito geologico sicuro, Charm Industrial rende permanente la cattura e il sequestro del carbonio.

Alithic project image

Alithic abbina un processo di cattura della CO₂ mediante solvente a un nuovo metodo di scambio ionico per la rigenerazione efficiente del solvente. Il processo fa reagire la CO₂ con i rifiuti industriali e la trasforma in un materiale commercializzabile per la produzione di calcestruzzo a ridotto contenuto di carbonio. Questo approccio potrebbe favorire la rimozione a basso consumo energetico su ampia scala e può essere utilizzato in modo flessibile in un'ampia gamma di materie prime alcaline.

Alt Carbon project image

Alt Carbon diffonde basalto sulle piantagioni di tè indiane delle colline pedemontane dell'Himalaya, dove l'ambiente caldo e umido favorisce l'accelerazione della reazione naturale con l'acqua per la rimozione della CO₂ e lo stoccaggio come bicarbonato permanente. Il progetto impiega un nuovo approccio di verifica mediante l'uso di metalli traccianti nel suolo per ridurre i costi delle misurazioni e dell'ulteriore studio della degradazione in nuove aree geografiche. Il progetto di Alt Carbon migliora inoltre le condizioni del suolo e offre ricavi aggiuntivi agli agricoltori in un settore minacciato dall'aumento dei costi e dai cambiamenti climatici.

Anvil project image

Anvil fa entrare in contatto minerali alcalini altamente reattivi con la CO₂ dell'atmosfera in un sistema a energia ridotta che accelera il processo di mineralizzazione. I minerali carbonati solidi che ne risultano vengono quindi stoccati in modo duraturo il loco e la rimozione è facilmente misurabile. Il team punta a una materia prima promettente e sta accelerando l'ampio utilizzo per la rimozione su vasta scala.

Capture6 project image

Capture6 impiega l'elettricità e l'acqua salata in un sistema elettrochimico per rimuovere la CO₂ e i flussi di rifiuti industriali. L'azienda utilizza tecnologie comprovate e l'integrazione può essere eseguita in modo flessibile in una serie di processi industriali per generare co-prodotti come metalli puliti o acqua, il che aumenta la possibilità di una scalabilità rapida ed economica. Il progetto accelera anche la ricerca in merito all'utilizzo produttivo di sottoprodotti chimici a ridotto contenuto di carbonio.

Exterra Carbon Solutions project image

Exterra impiega un processo termochimico per trasformare i rifiuti minerari in minerali alcalini a rapido dissolvimento, utilizzabili per rimuovere carbonio in una serie di modi. Per il progetto pilota, l'azienda collabora con Planetary per miscelare i materiali nelle bocche di scarico costiere dove riduce la CO₂ dell'atmosfera e la stocca in modo permanente sotto forma di bicarbonato oceanico. Il processo pulisce i siti minerari eliminando i residui di amianto ed estraendo metalli utili con ridotto contenuto di carbonio come il nichel che può essere commercializzato per ridurre i costi della rimozione.

Flux project image

Flux accelera la naturale capacità di assorbire CO₂ spargendo basalto sui terreni coltivati dell'Africa subsahariana, un'area geografica con un elevato potenziale di degradazione grazie al clima umido e tropicale. L'azienda sta diffondendo la degradazione agricola in nuove aree geografiche e sta sviluppando una piattaforma tecnologica per agevolare la misurazione attendibile e responsabile e le future implementazioni. Oltre allo stoccaggio di CO₂ come bicarbonato, il basalto offre significativi vantaggi agronomici per i contadini che da sempre hanno meno accesso ad ammendanti per il terreno come fertilizzanti o calce.

NULIFE project image

NULIFE impiega un processo chiamato liquefazione idrotermica per trasformare in modo efficiente le biomasse di rifiuti umidi in un bio-petrolio economico da trasportare, che viene iniettato nel sottosuolo per la rimozione permanente. Il processo è in grado di distruggere i contaminanti delle biomasse di rifiuti come le sostanze perfluoro alchiliche e di generare co-prodotti potenzialmente commercializzabili che riducono il costo della rimozione di carbonio.

Planeteers project image

Planeteers impiega un nuovo processo per oscillazione di pressione per convertire il calcare, una materia prima economica e abbondante, in minerali carbonati idrati, un materiale a rapido dissolvimento che può rappresentare una materia prima scalabile per una serie di approcci alla rimozione del carbonio. Il progetto pilota dell'azienda aggiunge questo materiale ai flussi idrici degli impianti di trattamento delle acque, dove reagisce con la CO₂ presente nell'aria per formare un bicarbonato resistente. L'approccio è facile da misurare e utilizza le infrastrutture esistenti, così da ridurre i costi.

Silica project image

Silica utilizza basalto e altre rocce vulcaniche nelle aziende agricole di canna da zucchero in Messico, dove il caldo e l'umidità accelerano la degradazione dei materiali e lo stoccaggio della CO₂ come bicarbonato. L'azienda fa da pioniera a un nuovo approccio che potrebbe semplificare la misurazione della rimozione di carbonio nelle aziende agricole più piccole e ridurne i costi e sta collaborando con brand rivolti ai consumatori per dimostrare come integrare la rimozione di carbonio nelle supply chain agricole.

Airhive project image

Airhive sta producendo un sistema di cattura geochimica diretta dall'aria utilizzando una struttura sorbente ultraporosa che può essere prodotta da minerali terrestri economici e abbondanti. Tale sorbente reagisce rapidamente con la CO₂ atmosferica se mescolato all'aria nel reattore a letto fluidizzato di Airhive. Insieme a un processo di rigenerazione basato sull'energia elettrica per il rilascio della CO₂ da destinare allo stoccaggio geologico, la procedura offre un approccio promettente alla cattura diretta e a basso costo dall'aria.

Alkali Earth project image

Alkali Earth impiega sottoprodotti alcalini, come scorie metalliche e aggregati di ghiaia per realizzare manti stradali. I minerali ricchi di magnesio e calcio presenti nella ghiaia reagiscono a contatto con la CO₂ atmosferica e formano carbonati stabili che vengono stoccati in modo permanente durante la cementazione delle superfici stradali. La ghiaia diffusa sulle strade aumenta l'area esposta alla CO₂ e sfrutta il traffico per agitare ulteriormente la ghiaia, accelerando così l'assorbimento della CO₂.

Banyu Carbon project image

Banyu impiega la luce solare per catturare la CO₂ dall'acqua del mare e stoccarla in modo permanente. Una molecola attivata dalla luce e riutilizzabile, che diventa acida se esposta alla luce, causa la degassificazione del carbonio dissolto in acqua come CO₂ che viene poi decompresso per lo stoccaggio. Poiché è necessaria solo una piccola porzione dello spettro di luce visibile per avviare la reazione e la molecola attivata dalla luce può essere riutilizzata migliaia di volte, questo approccio risulta a basso uso energetico e consente la rimozione diretta dagli oceani.

CarbonBlue project image

CarbonBlue ha sviluppato un processo di rigenerazione del calcio che consente di rimuovere la CO₂ dalle acque salate e dolci. Questa innovativa mineralizzazione, dissoluzione e rigenerazione dell'idrolisi della brina rilasciano la CO₂ catturata dall'acqua senza la necessità di alcuna materia prima minerale o chimica. I reattori sono altamente efficienti dal punto di vista energetico e richiedono una temperatura di rigenerazione sufficientemente bassa da consentire l'utilizzo del calore dei rifiuti.

EDAC Labs project image

EDAC Labs impiega un processo elettrochimico per produrre acidi e basi. L'acido viene utilizzato per avviare il recupero di metalli preziosi dai residui legati all'attività mineraria, mentre la base viene impiegata per catturare la CO₂ dall'aria. I flussi di acidi e basi vengono quindi combinati per produrre metalli, vendibili per applicazioni come le batterie, e carbonati solidi responsabili dello stoccaggio permanente della CO₂. Il processo di EDAC Labs è efficiente dal punto di vista energetico, impiega abbondanti residui delle attività minerarie e produce co-prodotti di valore che generano ricavi.

Holocene project image

Holocene cattura la CO₂ dall'aria mediante molecole organiche che è possibile produrre a basso costo. Nella prima fase della procedura, la CO₂ viene catturata dall'aria quando entra in contatto con una soluzione liquida. Nella seconda fase, mediante una reazione chimica avviene la cristallizzazione del materiale che diviene solido. Tale solido viene riscaldato per rilasciare la CO₂, il che riduce al minimo lo spreco di energia necessario per riscaldare l'acqua. Il processo viene eseguito a basse temperature, per ridurre ulteriormente l'energia necessaria e aumentare la flessibilità energetica.

Mati project image

Mati applica polveri di rocce silicate ai terreni agricoli iniziando dalle risaie in India. Tali rocce reagiscono con acqua e CO₂ e producono carbonio inorganico dissolto, successivamente stoccato nei bacini idrici locali e, alla fine, negli oceani. Mati si affida all'inondazione delle risaie e alle temperature subtropicali più elevate per accelerare la degradazione, e al campionamento esteso e alla modellazione di suolo e fiumi per misurare la rimozione e assicurare vantaggi collaterali ai piccoli agricoltori.

Spiritus project image

Spiritus impiega un sorbente prodotto da un polimero altamente disponibile e ad alta capacità di stoccaggio di CO₂. Il sorbente saturato con CO₂ viene quindi rigenerato utilizzando una nuova procedura di desorbimento e cattura la CO₂, consentendo il riutilizzo del sorbente con meno energia rispetto alla camera a vuoto altamente riscaldata generalmente utilizzata negli approcci a cattura diretta dall'aria. Il sorbente economico e ad alte prestazioni e la ridotta energia necessaria alla rigenerazione offrono un'opzione a basso costo.

Rewind.earth project image

Rewind affonda residui agricoli e forestali nelle profondità prive di ossigeno del Mar Nero, lo specchio d'acqua anossico più grande al mondo. L'acqua priva di ossigeno rallenta in modo significativo la decomposizione delle biomasse. L'assenza di organismi viventi nel Mar Nero limita i rischi potenziali per l'ecosistema. Grazie all'implementazione di programmi pilota, il team esaminerà la resistenza delle biomasse sommerse e le modalità avanzate per la misurazione e la modellazione del carbonio rimosso.

Carboniferous project image

Carboniferous cala fasci di fibre di canna da zucchero residui e stocchi di mais nei profondi bacini salati e privi di ossigeno del Golfo del Messico. L'assenza di ossigeno di questi ambienti, e la conseguente assenza di animali e della maggior parte delle specie microbiche, rallenta la decomposizione delle biomasse che vengono pertanto preservate e stoccate in modo duraturo nei sedimenti oceanici. Il team condurrà opportuni esperimenti per determinare la stabilità delle biomasse affondate, oltre che l'interazione con la biogeochimica oceanica.

Arca project image

Arca cattura la CO₂ dall'atmosfera e la mineralizza in roccia. Il team collabora con produttori di metalli fondamentali, trasformando i rifiuti minerari in un enorme "pozzo di assorbimento" del carbonio. Tramite l'uso di rover autonomi, l'approccio adottato porterà a una più rapida mineralizzazione del carbonio, un processo naturale che serve a stoccare la CO₂ in modo permanente sotto forma di minerali di carbonato. Creando un sistema capace di lavorare direttamente in miniera, Arca abbatte i costi e le emissioni correlati alla movimentazione del materiale verso gli stabilimenti di lavorazione.

Captura project image

Captura sfrutta l'oceano per la rimozione scalabile tramite la progettazione di un processo elettrochimico in grado di separare gli acidi e le basi dall'acqua di mare. L'acido viene utilizzato per rimuovere la CO₂ presente nell'acqua di mare, che viene iniettata per uno stoccaggio geologico permanente. La base viene utilizzata per trattare l'acqua rimanente e ritrasferirla in tutta sicurezza nell'oceano che, a sua volta, cattura ulteriore CO₂ dall'atmosfera. Captura sta sviluppando delle membrane ottimizzate per aumentare l'efficienza elettrica e abbassare i costi di rimozione.

Carbon To Stone project image

Carbon To Stone sta sviluppando una nuova forma di cattura diretta dall'aria, in cui un solvente che si lega alla CO₂ viene rigenerato reagendo con materiali alcalini di scarto. Sostituendo la tradizionale rigenerazione dei solventi che si serve dei cambiamenti di calore e pressione con la mineralizzazione diretta di scarti alcalini a basso costo come le scorie di acciaio, il team riesce a ridurre in modo significativo l'energia necessaria e, di conseguenza, i costi. La CO₂ viene stoccata a lungo termine sotto forma di minerali di carbonato solido, che possono essere utilizzati come cementi alternativi.

Cella project image

Cella aumenta le possibilità di stoccare il carbonio in modo sicuro tramite la mineralizzazione. Il sistema accelera il processo naturale mediante il quale la CO₂ viene convertita in forma minerale solida iniettandola in formazioni di rocce vulcaniche insieme ad acqua salata e a salamoie geotermiche di scarto, con l'intento di abbassare i costi e ridurre al minimo l'impatto ambientale. La tecnologia di Cella integra il calore geotermico a basse emissioni di carbonio e può essere abbinata a svariate metodologie di cattura.

InPlanet project image

Inplanet accelera la degradazione meteorica naturale per sequestrare in modo permanente la CO₂ e rigenerare suoli tropicali. Il team di progetto collabora con gli agricoltori per applicare polvere di roccia silicea sicura in condizioni di maggiore umidità e calore, il che può portare a una maggiore velocità di degradazione e, di conseguenza, a un assorbimento più rapido della CO₂. Il team sta sviluppando delle stazioni di monitoraggio per generare dati pubblici di prove sul campo al fine di comprendere meglio le modalità di cambiamento dei tassi di degradazione alle condizioni atmosferiche e nel suolo tropicale del Brasile.

Kodama project image

Kodama e lo Yale Carbon Containment Lab stanno implementando un metodo di tipo proof-of-concept per stoccare la biomassa da legno di scarto interrandola nel sottosuolo in camere anossiche, per impedirne la decomposizione. Il team analizzerà l'impatto che le condizioni delle camere e gli elementi di disturbo fuori terra avranno sulla stabilità e sul rischio di inversione.

Nitricity project image

Nitricity sta analizzando la possibilità di integrare la rimozione del carbonio in un nuovo processo per la produzione elettrificata di fertilizzanti ecologici. Tale processo combina composti azotati a zero emissioni di carbonio, fosforite e CO₂, per produrre nitrofosfati per il settore dei fertilizzanti e stoccare la CO₂ a lungo termine sotto forma di calcare. Questo nuovo sistema potrebbe rappresentare una soluzione di stoccaggio a basso costo per flussi di CO₂ diluita, con l'ulteriore vantaggio di decarbonizzare il settore dei fertilizzanti.

AspiraDAC project image

AspiraDAC sta costruendo un sistema modulare a energia solare di cattura diretta dall'aria, la cui fonte di alimentazione è integrata nei singoli moduli. Il loro sorbente a struttura metallo-organica ha requisiti di calore a bassa temperatura e consentirà di abbattere i costi dei materiali. Infine, l'approccio modulare consente loro di sperimentare uno scale-up più distribuito.

RepAir project image

RepAir utilizza elettricità pulita per catturare la CO₂ dall'aria utilizzando una nuova cella elettrochimica e collabora con Carbfix per iniettare e mineralizzare l'anidride carbonica nel sottosuolo. L'efficienza energetica dimostrata da RepAir durante la fase di acquisizione è già notevole e continua a migliorare. Tale approccio ha il potenziale per garantire una rimozione del carbonio a basso costo che riduca al minimo la tensione aggiuntiva sulla rete elettrica.

Travertine project image

Travertine sta riprogettando la produzione chimica per la rimozione del carbonio. Mediante l'elettrochimica, Travertine produce acido solforico per accelerare l'invecchiamento degli sterili ultramafici, rilasciando elementi reattivi che convertono l'anidride carbonica dall'aria in minerali carbonatici che sono stabili su scale temporali geologiche. Il loro processo trasforma i rifiuti minerari in una fonte di rimozione del carbonio nonché materie prime per altre tecnologie di transizione ecologica come le batterie.

Calcite-Origen project image

Questo progetto, una collaborazione tra 8 Rivers e Origen, accelera il processo naturale di mineralizzazione del carbonio mettendo in contatto la calce spenta altamente reattiva con l'aria ambiente per catturare la CO₂. I minerali carbonatici risultanti vengono calcinati per creare un flusso concentrato di anidride carbonica per lo stoccaggio geologico e quindi sottoposti a loop continuo. I materiali economici e il tempo di ciclo rapido rendono questo approccio promettente per quanto riguarda la cattura del carbonio su larga scala a prezzi accessibili.

Living Carbon project image

Living Carbon vuole ingegnerizzare le alghe per produrre rapidamente sporopollineina, un biopolimero altamente durevole che può quindi essere essiccato, raccolto e conservato. La ricerca iniziale mira a comprendere meglio il pensiero dominante nel settore riguardo alla durabilità della sporopollineina e a quale sia il ceppo di alghe ottimale per produrla rapidamente. L'applicazione di strumenti di biologia sintetica ai fini della progettazione di sistemi naturali che garantiscano una migliore e duratura cattura del carbonio ha il potenziale per essere un processo di rimozione scalabile e a basso costo.

Climeworks project image

Avvalendosi della collaborazione di Carbfix, Climeworks utilizza energia geotermica rinnovabile e calore di scarto per catturare CO₂ direttamente dall'aria, condensarla e sequestrarla in modo permanente nel sottosuolo in formazioni rocciose basaltiche.

CarbonCure project image

CarbonCure inietta la CO₂ nel calcestruzzo fresco, dove si mineralizza e resta incorporata in modo permanente, migliorando la resistenza alla compressione del calcestruzzo.

Vesta project image

Project Vesta cattura CO₂ applicando un minerale che abbonda in natura, l'olivina, alle coste. Le onde dell'oceano frantumano l'olivina, la quale cattura dall'oceano la CO₂ presente nell'atmosfera e la stabilizza come calcare sul fondo del mare.

Running Tide project image

Running Tide distribuisce nell'oceano delle boe realizzate con legno di scarto che galleggiano e su cui crescono delle microalghe. Successivamente le boe affondano, stoccando il carbonio derivante dalla biomassa nei sedimenti oceanici profondi.

Equatic project image

Equatic sfrutta il potenziale e la vastità degli oceani del mondo per la rimozione del carbonio. La sua procedura elettrochimica sperimentale sequestra la CO₂ nelle acque del mare sotto forma di carbonati, un materiale inerte assimilabile a quello delle conchiglie, garantendo così la rimozione permanente ed efficiente dal punto di vista energetico della CO₂.

Mission Zero project image

Mission Zero rimuove la CO₂ dall'aria in maniera elettrochimica e la concentra per destinarla a una serie di soluzioni di sequestro. La procedura sperimentale può essere effettuata con elettricità pulita e garantisce potenzialmente costi ridotti ed elevati volumi.

CarbonBuilt project image

Il processo di CarbonBuilt converte tempestivamente la CO₂ diluita in carbonato di calcio, creando un'alternativa senza compromessi e a basso impatto di carbonio al calcestruzzo tradizionale.

44.01 project image

44.01 trasforma la CO₂ in roccia, sfruttando il naturale potere di mineralizzazione. Grazie alla sua tecnologia, la CO₂ viene iniettata e stoccata in modo permanente nella peridotite, una roccia disponibile in abbondanza. Un approccio di stoccaggio di questo genere può essere accompagnato da una serie di tecnologie di cattura.

Ebb project image

Ebb Carbon mitiga l'acidificazione dell'oceano catturando la CO₂. Utilizzando membrane ed elettrochimica, Ebb rimuove l'acido dall'oceano e ne incrementa le capacità naturali di ridurre la CO₂ dell'aria mediante il suo stoccaggio sotto forma di bicarbonato nell'oceano.

Sustaera project image

Sustaera usa dei contattori monolitici in ceramica per catturare la CO₂ direttamente dall'aria e stoccarla sotto terra in modo permanente. Alimentato da elettricità pulita e costituito da componenti modulari, il sistema di cattura diretta dall'aria è ideato per essere prodotto in modo rapido e catturare le emissioni su larga scala.

UNDO project image

UNDO sparge la roccia basaltica polverizzata sui terreni agricoli, accelerando il processo naturale della degradazione meteorica. La CO₂ dissolta nell'acqua piovana reagisce con la roccia, mineralizza e viene stoccata in modo sicuro come bicarbonato per tempi lunghissimi. Il team sta conducendo alcuni test in laboratorio e sul campo per confermare ulteriormente la degradazione meteorica delle rocce come tecnologia naturale permanente e scalabile finalizzata alla rimozione del carbonio.

Arbon project image

Arbon impiega l'oscillazione dell'umidità per catturare la CO₂ dall'aria. Il sorbente si lega con la CO₂ asciutta e la rilascia quando è umida. Questa procedura di rilascio della CO₂ impiega meno energia rispetto agli approcci basati sulla variazione di temperatura e pressione. È dimostrato che la capacità del sorbente di legare la CO₂ resta stabile anche per migliaia di cicli. Entrambe le innovazioni sono potenzialmente in grado di ridurre il costo della cattura diretta dall'aria.

Vycarb project image

Vycarb impiega un reattore per aggiungere alcalinità calcarea alle acque oceaniche costiere al fine di assorbire e stoccare la CO₂ atmosferica. Il sistema di dissoluzione dispone di un innovativo impianto di rilevamento che esegue test di basicità delle acque, dissolve il carbonato di calcio e dosa l'alcalinità nell'acqua in base a una quantità controllata sicura per la dispersione. Questo sistema chiuso semplifica la misurazione della quantità di alcalinità dissolta aggiunta e della CO₂ rimossa.

Revisori tecnici

Brentan Alexander, PhD

Tuatara Advisory
Tech to Market

Stephanie Arcusa, PhD

Arizona State University
Governance

Habib Azarabadi, PhD

Arizona State University
Cattura diretta dall'aria

Damian Brady, PhD

Darling Marine Center, University of Maine
Oceani

Robert Brown, PhD

Iowa State University
Biochar

Holly Jean Buck, PhD

Università di Buffalo
Governance

Liam Bullock, PhD

Geociencias Barcelona
Geochimica

Wil Burns, PhD

Northwestern University
Governance

Micaela Taborga Claure, PhD

Repsol
Cattura diretta dall'aria

Struan Coleman

Darling Marine Center, University of Maine
Oceani

Niall Mac Dowell, PhD

Imperial College London
Biomassa/bioenergie

Anna Dubowik

Negative Emissions Platform
Governance

Petrissa Eckle, PhD

ETH Zurich
Sistemi energetici

Erika Foster, PhD

Point Blue Conservation Science
Ecologia dell'ecosistema

Matteo Gazzani, PhD

Copernicus Institute of Sustainable Development all'Università di Utrecht
Cattura diretta dall'aria

Lauren Gifford, PhD

School of Geography, Development & Environment dell'Università dell'Arizona
Governance

Sophie Gill

University of Oxford Department of Earth Sciences
Oceani

Emily Grubert, PhD

University of Notre Dame
Governance

Steve Hamburg, PhD

Environmental Defense Fund
Ecologia dell'ecosistema

Booz Allen Hamilton

Energy Technology Team
Biomassa/Cattura diretta dall'aria

Jens Hartmann, PhD

Universität Hamburg
Geochimica

Anna-Maria Hubert, PhD

Facoltà di Legge dell'Università di Calgary
Governance

Lennart Joos, PhD

Out of the Blue
Oceani

Marc von Keitz, PhD

Grantham Foundation for the Protection of the Environment
Oceani/Biomassa

Yayuan Liu, PhD

Johns Hopkins University
Elettrochimica

Matthew Long, PhD

Centro nazionale per gli studi atmosferici degli Stati Uniti d'America
Oceani

Susana García López, PhD

Heriot-Watt University
Cattura diretta dall'aria

Kate Maher, PhD

Stanford Woods Institute for the Environment
Geochimica

John Marano, PhD

JM Energy Consulting
Tech to Market

Dan Maxbauer, PhD

Carleton College
Geochimica

Alexander Muroyama, PhD

Paul Scherrer Institut
Elettrochimica

Sara Nawaz, PhD

University of Oxford
Governance

Rebecca Neumann, PhD

University of Washington
Biochar/Geochimica

NexantECA

Energy Technology Team
Biomassa/Cattura diretta dall'aria

Daniel Nothaft, PhD

University of Pennsylvania
Mineralizzazione

Lawrence Livermore National Laboratory

Lawrence Livermore National Laboratory
Cattura diretta dall'aria

Teagen Quilichini, PhD

Canadian National Research Council
Biologia

Zach Quinlan

Scripps Institution of Oceanography
Oceani

Mim Rahimi, PhD

University of Houston
Elettrochimica

Vikram Rao, PhD

Research Triangle Energy Consortium
Mineralizzazione

Paul Reginato, PhD

Innovative Genomics Institute alla UC Berkeley
Biotecnologie

Debra Reinhart, PhD

University of Central Florida
Gestione dei rifiuti

Phil Renforth, PhD

Heriot-Watt University
Mineralizzazione

Sarah Saltzer, PhD

Stanford Center for Carbon Storage
Stoccaggio geologico

Saran Sohi, PhD

University of Edinburgh
Biochar

Mijndert van der Spek, PhD

Heriot-Watt University
Cattura diretta dall'aria

Max Tuttman

The AdHoc Group
Tech to Market

Shannon Valley, PhD

Woods Hole Oceanographic Institution
Oceani

Jayme Walenta, PhD

University of Texas, Austin
Governance

Frances Wang

Fondazione ClimateWorks
Governance

Fabiano Ximenes, PhD

New South Wales Department of Primary Industries
Biomassa/bioenergie

Domande frequenti

Trova le risposte alle domande più comuni su Climate Commitments.