Data Scientist

About Stripe

Stripe is a financial infrastructure platform for businesses. Millions of companies—from the world’s largest enterprises to the most ambitious startups—use Stripe to accept payments, grow their revenue, and accelerate new business opportunities. Our mission is to increase the GDP of the internet, and we have a staggering amount of work ahead. That means you have an unprecedented opportunity to put the global economy within everyone’s reach while doing the most important work of your career.

About the team

Our Data Science team partners deeply with teams across Stripe to ensure that our users, our products, and our business have the models, data products, and insights needed to make decisions and grow responsibly. We’re looking for data scientists with a passion for analyzing data, building machine learning and statistical models, and running experiments to drive impact.  Our work is broad and varied, influencing how our products work (e.g. understanding user needs, preventing fraud, or optimizing charge flows), how our business works (forecasting key outcomes, managing liquidity, quantifying risk exposure), how our go-to-market motions operate (designing growth experiments, optimizing marketing investments, refining sales processes, and estimating causal effects), and everything in between. We have a variety of Data Science roles and teams across Stripe and will seek to align you to the most relevant team based on your background. 

What you'll do

We’re looking for a variety of Data Scientists to partner with the Product, Finance, Payments, Risk, Growth and Go-to-Market teams. You’ll work closely with a specific part of the business, playing a crucial role in optimizing our systems and leveraging data to make strategic business decisions. As Data Scientists as Stripe, it’s our mission to ensure that the company strategy, products, and user  interactions make smart use of our rich data, using  techniques like machine learning, statistical modeling, causal inference, optimization, experimentation, and all forms of analytics.

Who you are

We’re looking for someone who meets the minimum requirements to be considered for the role. If you meet these requirements, you are encouraged to apply. The preferred qualifications are a bonus, not a requirement.

Minimum Requirements

  • 3-8+ years of data science/quantitative modeling experience
  • Proficiency in SQL and a computing language such as Python or R 
  • Strong knowledge and hands-on experience in several  of the following areas: machine learning, statistics, optimization, product analytics, causal inference, and/or experimentation
  • Experience in working with cross-functional teams to deliver results
  • Ability to communicate results clearly and a focus on driving impact
  • A demonstrated ability to manage and deliver on multiple projects with a high attention to detail
  • Solid business acumen and experience in synthesizing complex analyses into actionable recommendations
  • A builder's mindset with a willingness to question assumptions and conventional wisdom

Preferred qualifications 

  • Experience deploying models in production and adjusting model thresholds to improve performance
  • Experience designing, running, and analyzing complex experiments or leveraging causal inference designs
  • Experience with distributed tools such as Spark, Hadoop, etc.
  • A PhD or MS in a quantitative field (e.g., Statistics, Engineering, Mathematics, Economics, Quantitative Finance, Sciences, Operations Research)

Hybrid work at Stripe

This role is available either in an office or a remote location (typically, 35+ miles or 56+ km from a Stripe office).

Office-assigned Stripes spend at least 50% of the time in a given month in their local office or with users. This hits a balance between bringing people together for in-person collaboration and learning from each other, while supporting flexibility about how to do this in a way that makes sense for individuals and their teams.

A remote location, in most cases, is defined as being 35 miles (56 kilometers) or more from one of our offices. While you would be welcome to come into the office for team/business meetings, on-sites, meet-ups, and events, our expectation is you would regularly work from home rather than a Stripe office. Stripe does not cover the cost of relocating to a remote location. We encourage you to apply for roles that match the location where you currently or plan to live.

Pay and benefits

The annual salary range for this role in the primary location is C$140,000 - C$262,600. This range may change if you are hired in another location. For sales roles, the range provided is the role’s On Target Earnings (“OTE”) range, meaning that the range includes both the sales commissions/sales bonuses target and annual base salary for the role. This salary range may be inclusive of several career levels at Stripe and will be narrowed during the interview process based on a number of factors, including the candidate’s experience, qualifications, and specific location. Applicants interested in this role and who are not located in the primary location may request the annual salary range for their location during the interview process.

Specific benefits and details about what compensation is included in the salary range listed above will vary depending on the applicant’s location and can be discussed in more detail during the interview process. Benefits/additional compensation for this role may include: equity, company bonus or sales commissions/bonuses; retirement plans; health benefits; and wellness stipends.

Office locations

Toronto

Remote locations

Remote in Canada

Team

Data & Data Science

Job type

Full time

We look forward to hearing from you

At Stripe, we're looking for people with passion, grit, and integrity. You're encouraged to apply even if your experience doesn't precisely match the job description. Your skills and passion will stand out—and set you apart—especially if your career has taken some extraordinary twists and turns. At Stripe, we welcome diverse perspectives and people who think rigorously and aren't afraid to challenge assumptions. Join us.