Contribuisci alla rimozione del carbonio man mano che la tua azienda cresce

Grazie a Stripe Climate, bastano pochi clic per devolvere parte dei tuoi ricavi a iniziative a sostegno delle tecnologie di rimozione del carbonio. Entra a far parte di un gruppo sempre più numeroso di aziende ambiziose impegnate a cambiare il corso degli eventi a favore dell'ambiente.

Iscriviti in pochi istanti

Con pochi clic puoi donare una parte dei ricavi della tua azienda alle tecnologie d'avanguardia per la rimozione permanente del carbonio, direttamente dalla tua Dashboard.

Finanzia le tecnologie per la rimozione permanente del carbonio

I tuoi contributi vengono devoluti totalmente alla causa di rimozione del carbonio. I progetti di rimozione del carbonio sono finanziati e monitorati da Frontier, il team di scienziati e analisti di mercato interno a Stripe.

Condividi facilmente

Fai conoscere il tuo impegno ai clienti grazie a un nuovo badge che si aggiorna automaticamente su pagine di pagamento, ricevute e fatture in hosting su Stripe. Con il nostro kit di risorse, puoi usare il badge con estrema facilità ovunque desideri.

Ora disponibile per le aziende internazionali

Per diffondere su ampia scala la rimozione del carbonio è necessario un impegno globale e collettivo. Stripe Climate è disponibile per gli utenti Stripe in tutto il mondo.

Un'iniziativa pionieristica

Prendi esempio da altre aziende ambiziose

Un gruppo sempre più cospicuo di clienti sceglie il programma per cambiare il corso della rimozione del carbonio.

Perché finanziare la rimozione del carbonio

La rimozione del carbonio è fondamentale per contrastare i cambiamenti climatici

Per evitare gli effetti più catastrofici dei cambiamenti climatici, dobbiamo mirare a limitare l'aumento medio globale della temperatura a 1,5 °C in più rispetto ai livelli preindustriali, obiettivo che corrisponde a una riduzione delle emissioni globali di CO₂ da 40 miliardi di tonnellate annue del 2018 allo 0 netto entro il 2050.

Per giungere a questo obiettivo, il mondo dovrà ridurre radicalmente le nuove emissioni e, al tempo stesso, rimuovere il carbonio già presente nell'atmosfera.

Percorso per limitare l'innalzamento della temperatura globale a circa 1,5 °C.
Limitare l'innalzamento delle temperature globali a:
Storico emissioni Percorso di circa 2 °C Percorso di circa 1,5 °C Percorso attuale
Rimozione del carbonio necessaria per limitare l'innalzamento della temperatura globale a circa 1,5 °C.
Storico emissioni a cura del Global Carbon Project.1 "Percorso attuale" mostra i percorsi di rimozione SSP4-6.0,2,3 adottati da CICERO.4 Per semplicità, il grafico mostra solo la CO₂, sebbene gli scenari presentati giustifichino altre emissioni di gas serra, le quali dovranno essere tutte ridotte.

Tuttavia, la rimozione del carbonio è in ritardo

Le soluzioni esistenti per la rimozione del carbonio, come il rimboschimento e il sequestro del carbonio nel suolo, sono importanti, ma non sufficienti a risolvere il problema in tutta la sua vastità. È necessario sviluppare nuove tecnologie di rimozione del carbonio in grado di funzionare a basso costo e di intervenire su volumi elevati entro il 2050, anche se ancora non sono del tutto pronte.

Oggi, le soluzioni di rimozione del carbonio affrontano un circolo vizioso: in quanto tecnologie di nuova concezione, sono costose e non riescono ad attrarre una percentuale significativa di clienti, ma fintanto che non si raggiungerà una più vasta diffusione non sarà possibile incrementarne la produzione per ridurne i costi.

I primi aderenti all'iniziativa possono modificare il corso della rimozione del carbonio

I primi aderenti all'iniziativa possono contribuire ad abbassare i costi e ad aumentare il volume delle nuove tecnologie di rimozione del carbonio. Le curve di apprendimento e di esperienza relative alla produzione hanno dimostrato più volte che l'adozione e la diffusione su vasta scala producono miglioramenti, così come osservato per il sequenziamento del DNA, per la capacità degli hard disk e per i pannelli solari.

Questo approccio ha diretto gli acquisti iniziali di Stripe, spingendoci infine a lanciare Frontier, un impegno di mercato avanzato (AMC) per acquistare tecnologie di rimozione del carbonio. L'obiettivo è inviare un segnale forte in termini di domanda a ricercatori, imprenditori e investitori: c'è un mercato in crescita per queste tecnologie. Siamo ottimisti sul fatto che possiamo cambiare la traiettoria del settore e aumentare la probabilità che il mondo possa disporre di un portafoglio di soluzioni necessarie per scongiurare gli effetti peggiori del cambiamento climatico.

Rappresentazione stilizzata delle curve dell'esperienza fornite dal Santa Fe Institute.5

I nostri metodi di ricerca e di finanziamento

Le nostre proposte e i revisori scientifici

Stripe Climate collabora con Frontier, un team interno di scienziati e analisti di mercato che si occupa principalmente di tecnologie di rimozione del carbonio, per acquistare la rimozione del carbonio. Frontier si avvale della consulenza di un team multidisciplinare di scienziati ai massimi livelli che danno il loro contributo nella valutazione delle tecnologie di rimozione del carbonio più promettenti. Dai un'occhiata al nostro portfolio di progetti in continuo aumento, leggi i criteri che adottiamo per selezionarli o scopri i progetti open source che si sono candidati al programma.

Criteri

Scopri come valutiamo i progetti.

Progetti candidati

Scopri i progetti open source che si sono candidati al programma.

Le nostre proposte

Progetti autunno 2023

Airhive sta producendo un sistema di cattura geochimica diretta dall'aria utilizzando un sorbente che può essere prodotto da minerali terrestri economici e abbondanti. Tale sorbente reagisce rapidamente con la CO₂ atmosferica se mescolato all'aria nel reattore a letto fluidizzato di Airhive. Insieme a un processo di rigenerazione basato sull'energia elettrica per il rilascio della CO₂ da destinare allo stoccaggio geologico, la procedura offre un approccio promettente per la cattura diretta e a basso costo dall'aria.

Alkali Earth impiega sottoprodotti alcalini residui dei processi industriali, come la ghiaia in grado di rimuovere il carbonio, per la costruzione di strade. Tali minerali agiscono da dissipatori per la CO₂ atmosferica, stoccandola in modo permanente durante la cementazione delle superfici stradali. La formazione di minerali contenenti CO₂ nella ghiaia può essere misurata direttamente, il che porta a un'elevata sicurezza nelle rimozioni che ne conseguono.

Banyu Carbon impiega la luce solare per catturare la CO₂ dall'acqua del mare. Un molecola attivata dalla luce e riutilizzabile, che diventa acida se esposta alla luce, causa la degassificazione del carbonio dissolto in acqua di mare come CO₂ che viene poi stoccato in modo permanente. Poiché è necessaria solo una piccola porzione dello spettro di luce visibile per avviare la reazione, questo approccio risulta a basso uso energetico e consente la rimozione diretta dagli oceani.

Carbon Atlantis utilizza un processo noto come swing elettrochimico del pH. Il sistema utilizza un solvente per catturare la CO₂ e un acido per rilasciarla. Questo approccio si ispira alle recenti innovazioni delle celle a combustibile e degli elettrolizzatori a membrana a scambio protonico (PEM), rendendo il processo conveniente ed efficiente dal punto di vista energetico. La CO₂ viene quindi trasformata attraverso il processo di mineralizzazione di Paebbl per lo stoccaggio permanente in materiali da costruzione.

CarbonBlue impiega il calcio in un ciclo chiuso continuo per mineralizzare, separare e rimuovere dall'acqua la CO₂ dissolta, producendo un flusso puro di CO₂ che può essere sequestrata in modo permanente. L'approccio funziona in acqua dolce o salata e può sfruttare il calore di scarto per il processo di rigenerazione. Il team prevede di integrarlo con impianti di desalinizzazione e con altri settori legati al prelievo delle acque, per ridurre il consumo energetico e i costi.

CarbonRun migliora la capacità naturale delle correnti dei fiumi di degradare abbondanti quantità di calcare a basso costo e di ridurre i livelli di acidità dei fiumi. Questo offre vantaggi agli ecosistemi fluviali locali e migliora la capacità dei fiumi di catturare la CO₂ dall'atmosfera. I fiumi, che rappresentano sistemi di trasporto naturali di carbonio, quindi liberano la CO₂ nell'oceano per lo stoccaggio permanente sotto forma di bicarbonato.

EDAC Labs impiega un processo elettrochimico per produrre acidi e basi. L'acido viene utilizzato per avviare il recupero di metalli preziosi dai residui legati all'attività mineraria, mentre la base viene impiegata per catturare la CO₂ dall'aria. I flussi di acidi e basi vengono quindi combinati per produrre metalli, vendibili per applicazioni come batterie, e carbonati solidi responsabili dello stoccaggio permanente della CO₂.

Holocene cattura la CO₂ dall'aria mediante molecole organiche che è possibile produrre a basso costo. Nella prima fase della procedura, la CO₂ viene catturata dall'aria quando entra in contatto con una soluzione liquida. Nella seconda fase, una reazione chimica determina la cristallizzazione del materiale che diviene solido. Questo materiale solido viene riscaldato per rilasciare la CO₂, il che riduce al minimo la dissipazione energetica necessaria per riscaldare l'acqua. Il processo di Holocene viene eseguito a basse temperature, per ridurre ulteriormente l'energia necessaria, aumentare la flessibilità energetica e ridurre i costi complessivi.

Mati applica polveri di rocce silicate ai terreni agricoli iniziando dalle risaie in India. Tali rocce reagiscono con acqua e CO₂ e producono carbonio inorganico dissolto, successivamente stoccato nei bacini idrici locali e, alla fine, negli oceani. Mati si affida all'inondazione delle risaie e alle temperature subtropicali più elevate per accelerare la degradazione, e al campionamento esteso e alla modellazione di suolo e fiumi per misurare la rimozione e assicurare vantaggi collaterali ai piccoli agricoltori.

Planetary sfrutta gli oceani per la rimozione scalabile. L'azienda introduce materiali alcalini nelle bocche di scarico esistenti negli oceani, come gli impianti per il trattamento delle acque reflue e i circuiti di raffreddamento delle centrali elettriche. Questo accelera il sequestro sicuro e permanente della CO₂ come ioni di bicarbonato nell'oceano. Planetary poi verifica la rimozione tramite misurazioni e tecniche di modellazione avanzate.

Spiritus impiega un sorbente prodotto con materiali disponibili in commercio e un contattore passivo ad aria che richiede poca energia per catturare la CO₂. Il sorbente saturato con la CO₂ viene quindi rigenerato utilizzando una nuova procedura di desorbimento e cattura la CO₂ consentendo il riutilizzo del sorbente con meno energia rispetto alla camera a vuoto altamente riscaldata generalmente utilizzata negli approcci a cattura diretta dall'aria. Il sorbente economico e ad alte prestazioni e la ridotta energia necessaria alla rigenerazione offrono un'opzione a basso costo.

Vaulted Deep inietta rifiuti organici in pozzi permanenti dove il carbonio presente nei rifiuti viene sequestrato via via che si decompone. Mediante l'impiego di una speciale tecnologia di iniezione di liquami, la procedura è in grado di gestire un'ampia gamma di fonti di carbonio organico con uso minimo di energia e poca elaborazione anticipata. Il sistema può essere implementato rapidamente su ampia scala.

Arbon impiega l'oscillazione dell'umidità per catturare la CO₂ dall'aria. Il sorbente si lega con la CO₂ asciutta e la rilascia quando è umida. Questa procedura di rilascio della CO₂ impiega meno energia rispetto agli approcci basati sulla variazione di temperatura e pressione. È dimostrato che la capacità del sorbente di legare la CO₂ resta stabile anche per migliaia di cicli. Entrambe le innovazioni sono potenzialmente in grado di ridurre il costo della cattura diretta dall'aria.

Vycarb impiega un reattore per aggiungere alcalinità calcarea alle acque oceaniche costiere al fine di assorbire e stoccare la CO₂ atmosferica. Il sistema di dissoluzione dispone di un innovativo impianto di rilevamento che esegue test di basicità delle acque, dissolve il carbonato di calcio e dosa l'alcalinità nell'acqua in base a una quantità controllata sicura per la dispersione. Questo sistema chiuso semplifica la misurazione della quantità di alcalinità dissolta aggiunta e della CO₂ rimossa.

Carboniferous cala fasci di fibre di canna da zucchero residui e stocchi di mais nei profondi bacini salati e privi di ossigeno del Golfo del Messico. L'assenza di ossigeno di questi ambienti, e la conseguente assenza di animali e della maggior parte delle specie microbiche, rallenta la decomposizione delle biomasse che vengono pertanto efficacemente preservate e stoccate in modo duraturo nei sedimenti oceanici. Il team condurrà opportuni esperimenti per determinare la stabilità funzionale delle biomasse affondate, oltre che l'interazione con la biogeochimica oceanica.

Rewind impiega apposite gru installate su imbarcazioni per affondare i residui agricoli e forestali nelle profondità prive di ossigeno del Mar Nero, lo specchio d'acqua anossico più grande al mondo. L'acqua priva di ossigeno rallenta in modo significativo la decomposizione delle biomasse. L'assenza di organismi viventi nel Mar Nero limita i rischi potenziali per l'ecosistema. Il processo consente una rimozione del carbonio sicura per l'ambiente ed economicamente conveniente.

Revisori tecnici

Brentan Alexander, PhD

Tuatara Advisory
Tech to Market

Stephanie Arcusa, PhD

Arizona State University
Governance

Habib Azarabadi, PhD

Arizona State University
Cattura diretta dall'aria

Damian Brady, PhD

Darling Marine Center, University of Maine
Oceani

Robert Brown, PhD

Iowa State University
Biochar

Holly Jean Buck, PhD

Università di Buffalo
Governance

Liam Bullock, PhD

Geociencias Barcelona
Geochimica

Wil Burns, PhD

Northwestern University
Governance

Micaela Taborga Claure, PhD

Repsol
Cattura diretta dall'aria

Struan Coleman

Darling Marine Center, University of Maine
Oceani

Niall Mac Dowell, PhD

Imperial College London
Biomassa/bioenergie

Anna Dubowik

Negative Emissions Platform
Governance

Petrissa Eckle, PhD

ETH Zurich
Sistemi energetici

Erika Foster, PhD

Point Blue Conservation Science
Ecologia dell'ecosistema

Matteo Gazzani, PhD

Copernicus Institute of Sustainable Development all'Università di Utrecht
Cattura diretta dall'aria

Lauren Gifford, PhD

School of Geography, Development & Environment dell'Università dell'Arizona
Governance

Sophie Gill

University of Oxford Department of Earth Sciences
Oceani

Emily Grubert, PhD

University of Notre Dame
Governance

Steve Hamburg, PhD

Environmental Defense Fund
Ecologia dell'ecosistema

Booz Allen Hamilton

Energy Technology Team
Biomassa/Cattura diretta dall'aria

Jens Hartmann, PhD

Universität Hamburg
Geochimica

Anna-Maria Hubert, PhD

Facoltà di Legge dell'Università di Calgary
Governance

Lennart Joos, PhD

Out of the Blue
Oceani

Marc von Keitz, PhD

Grantham Foundation for the Protection of the Environment
Oceani/Biomassa

Yayuan Liu, PhD

Johns Hopkins University
Elettrochimica

Matthew Long, PhD

Centro nazionale per gli studi atmosferici degli Stati Uniti d'America
Oceani

Susana García López, PhD

Heriot-Watt University
Cattura diretta dall'aria

Kate Maher, PhD

Stanford Woods Institute for the Environment
Geochimica

John Marano, PhD

JM Energy Consulting
Tech to Market

Dan Maxbauer, PhD

Carleton College
Geochimica

Alexander Muroyama, PhD

Paul Scherrer Institut
Elettrochimica

Sara Nawaz, PhD

University of Oxford
Governance

Rebecca Neumann, PhD

University of Washington
Biochar/Geochimica

NexantECA

Energy Technology Team
Biomassa/Cattura diretta dall'aria

Daniel Nothaft, PhD

University of Pennsylvania
Mineralizzazione

Lawrence Livermore National Laboratory

Lawrence Livermore National Laboratory
Cattura diretta dall'aria

Teagen Quilichini, PhD

Canadian National Research Council
Biologia

Zach Quinlan

Scripps Institution of Oceanography
Oceani

Mim Rahimi, PhD

University of Houston
Elettrochimica

Vikram Rao, PhD

Research Triangle Energy Consortium
Mineralizzazione

Paul Reginato, PhD

Innovative Genomics Institute alla UC Berkeley
Biotecnologie

Debra Reinhart, PhD

University of Central Florida
Gestione dei rifiuti

Phil Renforth, PhD

Heriot-Watt University
Mineralizzazione

Sarah Saltzer, PhD

Stanford Center for Carbon Storage
Stoccaggio geologico

Saran Sohi, PhD

University of Edinburgh
Biochar

Mijndert van der Spek, PhD

Heriot-Watt University
Cattura diretta dall'aria

Max Tuttman

The AdHoc Group
Tech to Market

Shannon Valley, PhD

Woods Hole Oceanographic Institution
Oceani

Jayme Walenta, PhD

University of Texas, Austin
Governance

Frances Wang

Fondazione ClimateWorks
Governance

Fabiano Ximenes, PhD

New South Wales Department of Primary Industries
Biomassa/bioenergie

Domande frequenti

Trova le risposte alle domande più comuni su Stripe Climate.